- 博客(10)
- 收藏
- 关注
原创 GlueStick: Robust Image Matching by Sticking Points and Lines Together
线段是与点互补的强大特征。它们提供了结构线索,强烈的观点和剧烈的照明变化,甚至可以出现在没有纹理的区域。然而,由于部分遮挡、缺乏纹理或重复的点相比,描述和匹配它们更具挑战性。本文介绍了一种新的匹配范式,即将点、线及其描述符统一为一个单一的线框结构。我们提出了胶棒,一种深度匹配图神经网络(GNN),它从不同的图像中获取两个线框图,并利用节点之间的连接信息来更好地将它们粘在一起。除了联合匹配带来的效率提高外,我们还演示了在单个体系结构中利用这两个特性的互补性时,性能的大大提高。
2024-02-29 17:34:45 1085
原创 不同特征点+LightGlue在不同场景下分析
SuperPoint提取的特征点更符合我们直观的印象(例如边缘、折角等),但是提取的特征点较少,尤其是在稀疏纹理之下,所以即使匹配成功率有60%以上,仍然可能无法满足实际应用需求。SIFT提取的特征点更多,但是其描述子可能稳健性不够,所以在相同场景下匹配成功的数目与SP差不多。但是从DISK看出,场景中仍存在着更多有效的特征点,在困难场景(模糊、昏暗等)下能够成功使用。对于匹配器来说,除了有遮挡情况下,基本匹配成功率都在60%以上。随着稳健的特征点的数目增多,成功匹配的数目也增多。
2024-01-31 19:08:01 1664 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人