思路: 带分数的表示方法可以抽象为n=a+b/c,因此可以转换成nc=ac+b,题目说数字 1∼9 分别出现且只出现一次,可以暴力枚举1~9的全排列,对于每个前排列分成3段,分别表示a,b,c,结果为等式nc=ac+b成立的个数。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
int n;
int a[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
int cal (int st, int ed) //计算从a数组从st到ed对应的整数
{
int res = 0;
for (int i = st; i <= ed; i ++)
res = res * 10 + a[i];
return res;
}
int main ()
{
ios::sync_with_stdio (false);
cin.tie (0); cout.tie(0);
cin >> n;
int res = 0;
do
{
for (int i = 0; i <= 6; i ++) //枚举第一段
for (int j = i + 1; j <= 7; j ++) //枚举第二段
{
int a = cal (0, i);
int b = cal (i + 1, j);
int c = cal (j + 1, 8);
if (n * c == a * c + b)
res ++;
}
}while (next_permutation(a, a + 9));
cout << res;
}