- 博客(31)
- 资源 (1)
- 收藏
- 关注
原创 解决git clone 时GnuTLS recv error (-110): The TLS connection was non-properly terminated
git clone TLS错误解决
2023-12-11 21:09:54 791
原创 Windows 安装 flash-attention 和 bitsandbytes
从此处下载最新版的whl,https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels,通过whl来安装bitsandbytes。从此处下载最新版的whl, https://github.com/bdashore3/flash-attention/releases, 通过whl来安装flash-attn。确保安装cuda12.1以及对应的torch,再从whl安装bitsandbytes,即可避免此问题。
2023-12-03 13:33:11 2272
原创 nlp中常用DataLoader中的collate_fn,对batch进行整理使其符合bert的输入
DataLoader中的collate_fn整理batch
2022-12-07 14:53:26 1464
原创 Word2Vec训练 RuntimeError: you must first build vocabulary before training the model
word2vec 报错
2022-10-15 22:50:41 929
原创 Floyd 算法,找出所有最短路径或最长路径 matlab (二)
所有最短路径在(一)中,我们获得了距离矩阵和路由矩阵(元胞)这个一个无向图这是上次算出的距离矩阵和路由矩阵,接下来介绍如何根据这个路由矩阵(元胞)写出所有最短路径函数function path=path_all(r, start, dest) % r : 路由表 % start : 起点index % dest : 终点index %初始化存储所有最短路径的矩阵path path=start; % path=r{start,dest}; 这样子写可以少算一轮,但
2021-06-27 11:30:02 4441 3
原创 Floyd 算法,找出所有最短路径或最长路径 matlab(一)
先看看此篇博客,了解常规floyd算法是如何求最短路径的,搞懂D和R的意义,再往后看,否则看不懂https://blog.csdn.net/kabuto_hui/article/details/82886826要求所有最短路径,其实很简单。不管有几条最短路径,最后获得的距离矩阵D一定是一样的,所以D矩阵迭代更新的部分不需要修改。原算法之所以只能求得一条最短路径,是因为它只有在D(i,K)+D(K,j)<D(i,j) D(i,K)+D(K,j) < D(i,j) \,D(i,K)+D
2021-06-27 00:04:00 5899 2
原创 Tensorflow2 win10 物体检测API的安装和使用 (用tf2的别再看老教程了 !)
如果你水平高,可以直接看官方教程,根据github上的教程和相关链接,基本就能学会了ヾ(◍°∇°◍)ノ゙。如果你不想看英文可以接着看下去( ̄▽ ̄)~*github官方教程1 配置环境首先确保已经配置好tensorflow2和cuda、cudnn环境,不要下载错。配置的教程已经有很多,自行查阅2 安装APItf2 object detection 的安装参考此博客TensorFlow 2 Object Detection API 物体检测教程其中tensorflow/models的下载可以选择
2021-06-18 15:52:44 989 6
原创 ROS python 开始\停止导航、发布目标点、获取实时位置
在四个终端中分别执行以下命令,开启仿真需要先有对应的包roscoreroslaunch rbx1_bringup fake_turtlebot.launch 开启仿真roslaunch rbx1_nav fake_move_base_blank_map.launch 加载空地图rosrun rviz rviz -d `rospack find rbx1_nav`/nav.rviz 开启rviz发布目标点,发送后立即开始运动命令行形式PoseStamped数据类型,主要要指明frame_id
2021-06-12 22:47:04 9168 5
原创 matlab 解矩阵的常微分方程
ode45不能直接把矩阵作为输入或输出,输入和返回值必须是列向量。所以把矩阵的每一个元素作为一个状态变量,例如22矩阵p=[p1,p2;p3,p4],在输出时转换为41列向量 [p1,p2,p3,p4] 即可.建立方程组,输入为y,输出为dy。考虑复数矩阵微分方程 dp/dt=(p * H-H * p) /i (p,H都为2 * 2矩阵,p(t)是t的函数)由于输入是列向量,先把p reshape为22矩阵,然后写出矩阵形式方程dy_mat=(Hy-y*H)/i; 输出dy再reshape为列向量即
2021-03-21 11:10:05 5681 5
原创 画出所有格点构型的邻接矩阵
接上一篇若两种构型可以一步转换,即视为相邻例如和不相邻而和相邻思路1.两种构型若相邻,只存在两种情况:末端1格点不同或中间1格点不同若中间一个点不同,相当于序列中两个值互换,如【0,2,1】转换为【2,0,1】,只有第二个点位置不同.所以是相邻。若末端不同,只要不是180°变换,都可视为相邻,如【0,2,0】、【0,2,1】不相邻,因为是180°变换。【0,2,0】、【0,2,2】则相邻2.对一个序列逐一进行所有末端变换和中间数据交换,然后找出总集合中和他形状一样的,即可得出一
2021-03-18 13:06:33 271
原创 二维或三维直角坐标中,画出形状不同的含N个格点的链
总体思路:1.以第一个节点为原点,依次向外生长,0、1、2、3、4、5分别代表6个生长方向。如列表[0,2,1,1]表示向左、向前、向右、向右2.遍历所有情况,然后删去旋转对称的、镜像对称的、节点顺序反向的3.再删去有含重叠节点的情况4.把相对位置转换为绝对坐标,画图定义旋转和镜像import itertoolsfrom matplotlib import pyplot as pltfrom matplotlib.pyplot import MultipleLocatorimport os
2021-03-13 14:52:40 431
原创 matlab 卷积神经网络 图像去噪 对抗样本修复
先准备好数据集,我上传在下一篇,可下载1.matlab自带的0-9手写数字,共10000张,为[28,28]单通道图像2.对应的对抗样本(加了干扰的图片)10000张(如何生成对抗样本可参照另一篇)导入数据imds = imageDatastore('DigitDataset', 'IncludeSubfolders', true, 'labelsource', 'foldernames');%读取原始图片[imdsTrain,imdsValidation] = splitEach
2021-01-11 21:12:06 3246 5
原创 keras 导入本地图片测试集并预测结果
需要的库from keras.preprocessing.image import ImageDataGeneratorimport tensorflow as tfimport numpy as npimport osimport cv2from PIL import Imagemodel = tf.keras.models.load_model('sand_model2') #加载已有模型方法1 (图片较多,按照字典形式存放)ImageDataGenerator方法data_di
2021-01-02 20:41:40 2170
原创 从SUN Database 下载图片数据集(使用Matlab,超简单ヾ(✿゚▽゚)ノ)
从SUN Database 下载图片数据集1.需要Matlab,同时下载LabelMe toolbox:下载地址http://labelme.csail.mit.edu/Release3.0/browserTools/php/matlab_toolbox.php下载后把解压后的文件夹添加到matlab路径2.去sun网站上找到自己想要的文件夹https://vision.princeton.edu/projects/2010/SUN/explore/如图,记住想要的文件夹名,如a/air_ba
2020-12-31 20:24:01 983 1
原创 Matlab 根据状态方程,绘制相轨迹
以二阶状态方程为例function draw_phase_locus(a,b,c)% 状态方程 x''+ a*x' + b*x +c=0global A;global B;global C;A=a;B=b;C=c;clffor j=-20:4:20 %遍历各种初始条件for i=-20:4:20[t,y]=ode45(@nolinear,[0,50],[i,j]);%(微分方程,[时间区间],[初始条件x',x])hold on;plot(y(:,1),y(:,2)); %y(:,1)
2020-12-28 23:31:54 7364
原创 Matlab表格识别
输入纸质表格,输出excel文件主程序输入I=imread(‘文件名’)的图片,I1为矩阵,再使用xlwrite(‘文件名’,I1),得到excel文件。需要预先训练好一个CNN网络(看matlab深度学习帮助文档),保存为et.mat。效果%主程序 excel_id.mfunction I1=excel_id(I)global fi;fi=0;load 'et.mat';%加载CNNI=cutall(I);%变黑白,去除空白for i=1:10 if length(I)&
2020-11-11 23:34:59 875 3
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人