Java递归算法

本文介绍了递归的概念,包括直接递归和间接递归,并通过阶乘和斐波那契数列的递归算法示例进行解析。强调了递归在算法设计中的重要性,同时提醒在使用递归时必须设置退出条件以避免无限循环。递归算法广泛应用于回溯和分治等复杂问题的解决策略中。
摘要由CSDN通过智能技术生成

递归在程序语言中就是方法本身自己调用自己,而递归思想是算法的重要思想之一,就是利用递归来实现解决问题的算法。

递归也分为直接递归和间接递归。

那么什么叫直接递归什么又叫间接递归呢?

//直接递归调用
function(){
    ...
    function();
    ...
}
​
//间接递归调用
function1(){
    ...
    function2();
    ...
}
function2(){
    ...
    function1();
    ...
}

直接递归调用其实就是方法自己直接调用自己,而间接递归则是在递归的过程中没有直接的调用自己,是间接的把自己调用了,用以上的列子来讲则是,方法1中包涵了方法2,而方法2里又包涵了方法1,所以方法1也包涵了自己本身,只是通过方法2 间接调用并没有直接递归那么明显。

在使用递归时有一点需要注意:必须要为递归方法设计一个出口,也就是停止的操作,没有出口的递归方法最终将会不断运行陷入死循环。

这里用递归算法来实现阶乘作为列子

import java.util.Scanner;
​
public class Recusion {
    int sum = 0;
    public static void main(String[] args) {
        System.out.printf("输入 n 的值:");
        Scanner scanner = new Scanner(System.in);
        int i = scanner.nextInt();
        int a;
        // 注意 由于mul不是静态方法所以要先声明对象
        Recusion recusion = new Recusion();
        a = recusion.mul(i);
        System.out.println(i+"的阶乘的结果为:"+ a);
    }
    public int mul(int i) {
        //出口 当 i等于1和0时跳出递归
        if (i == 1 || i == 0) {
            return 1;
        }else {
            return i * mul(i - 1);
        }
    }
}
​

递归到底是怎么实现的呢?它的实现原理是什么?

 

这里给出了一个具体的图解来解释递归方法的实现过程。以求阶乘的递归算法为例,列入输入5,方法执行到 n * (n-1) 后,也就是5 * 4之后暂停,再去执行以4为n的方法 实现为4 * 3 ,一直到3 * 2, 2 * 1,等到为1停止递归时将所有停止的数据恢复重新执行 也就是 : 5 * 4 *3 * 2 * 1,最终获得递归后的结果。

除了阶乘,用到递归算法的问题还有问题,与此同时许多算法也需要借助递归来实现:回溯算法和分治算法等等。

这里再给出斐波那契数列的解法:

import java.util.Scanner;
​
public class Fibonacci {
    public static void main(String[] args) {
        System.out.printf("输入 n 的值:");
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int a = fib(n);
        System.out.println("斐波那契数列中第"+n+"个的值是:" + a );
    }
    //斐波那契数列的等差公式:an = an-1 + an-2
    public static int fib(int n) {
        //添加结束条件
        if (n == 1 || n == 2) {
            return 1;
        }
        //递归
        return fib(n - 1) + fib(n - 2);
    }
}
对于斐波那契数列需要了解的就是它本身的规律:数列中每一个的值都等于它前两个值的和,借助这个规律再化用递归算法就能将原本复杂的问题简单化。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值