1527.患某种疾病的患者

1.题目

表: Employees

±------------±--------+
| Column Name | Type |
±------------±--------+
| employee_id | int |
| name | varchar |
±------------±--------+
employee_id 是这个表的主键。
每一行表示雇员的id 和他的姓名。

表: Salaries

±------------±--------+
| Column Name | Type |
±------------±--------+
| employee_id | int |
| salary | int |
±------------±--------+
employee_id is 这个表的主键。
每一行表示雇员的id 和他的薪水。

写出一个查询语句,找到所有 丢失信息 的雇员id。当满足下面一个条件时,就被认为是雇员的信息丢失:

雇员的 姓名 丢失了,或者
雇员的 薪水信息 丢失了,或者
返回这些雇员的id employee_id , 从小到大排序 。

2.示例

Input: 
Employees table:
+-------------+----------+
| employee_id | name     |
+-------------+----------+
| 2           | Crew     |
| 4           | Haven    |
| 5           | Kristian |
+-------------+----------+
Salaries table:
+-------------+--------+
| employee_id | salary |
+-------------+--------+
| 5           | 76071  |
| 1           | 22517  |
| 4           | 63539  |
+-------------+--------+
Output: 
+-------------+
| employee_id |
+-------------+
| 1           |
| 2           |
+-------------+
解释:
雇员1245 都工作在这个公司。
1号雇员的姓名丢失了。
2号雇员的薪水信息丢失了。

3.答案

注意:

  • 查询有工资且没有名字信息的或者有名字却没有工资信息的员工id
  • 查询结果按employee_id排序
select employee_id from employees where employee_id not in(select employee_id from salaries )
union select employee_id from salaries where employee_id not in(select employee_id from employees ) order by employee_id;

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/employees-with-missing-information

好的,我会尽力回答您的问题!这个问题可以用贝叶斯网络来建模患者病情的推断和预测,下面是一种可能的实现方法: 假设有 n 个症状和 m 种疾病,我们可以定义一个 n+m 个节点的贝叶斯网络,其中前 n 个节点表示症状,后 m 个节点表示疾病。对于每个患者,我们记录其所表现出的各个症状的状态,对应到贝叶斯网络中的各个症状节点。然后通过贝叶斯推理算法,可以计算出每种疾病状态的后验概率分布,从而实现病情的推断和预测。 下面是一个简单的python代码示例,使用pgmpy库来实现贝叶斯网络的构建和推理算法: ```python from pgmpy.models import BayesianModel from pgmpy.factors.discrete import TabularCPD from pgmpy.inference import VariableElimination # 定义症状和疾病节点 symptom_nodes = ['symptom_1', 'symptom_2', ..., 'symptom_n'] disease_nodes = ['disease_1', 'disease_2', ..., 'disease_m'] all_nodes = symptom_nodes + disease_nodes # 定义各个节点的条件概率分布 cpds = [] # 症状节点的条件概率分布 for symptom_node in symptom_nodes: cpd_symptom = TabularCPD( variable=symptom_node, variable_card=2, # 该症状的状态数为2(有或没有) values=[[p, 1-p] for p in [0.1, 0.3, ..., 0.9]], # 假设有一定的概率表现出该症状 evidence=[], evidence_card=[], ) cpds.append(cpd_symptom) # 疾病节点的条件概率分布,假设每种疾病有一个代表性症状 for i, disease_node in enumerate(disease_nodes): cpd_disease = TabularCPD( variable=disease_node, variable_card=2, values=[[p, 1-p] for p in [0.05*i + 0.1]], evidence=[symptom_nodes[i]], evidence_card=[2], ) cpds.append(cpd_disease) # 创建BayesianModel对象,并添加各个节点和边 model = BayesianModel() model.add_nodes_from(all_nodes) for i in range(n): for j in range(m): model.add_edge(symptom_nodes[i], disease_nodes[j]) # 将各个节点的条件概率分布添加到贝叶斯网络中 for cpd in cpds: model.add_cpds(cpd) # 进行贝叶斯推理 inference = VariableElimination(model) query = inference.query(variables=disease_nodes, evidence={ 'symptom_1': 1, # 假设第一个症状表现出来了 'symptom_3': 0, # 假设第三个症状没有表现出来 }) print(query['disease_1']) # 打印出疾病1的后验概率分布 ``` 当然,这只是一个简单的示例,实际应用中可能需要更多的复杂性和精细度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值