P2054解题报告

为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。

由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。

对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。

如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:

从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。

游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

输入格式

输入文件中有三个用空格间隔的整数,分别表示N,M,L

(其中0<N≤10^10 ,0 ≤M≤10^10,且N为偶数)。

输出格式

单行输出指定的扑克牌的牌面大小。

输入输出样例

输入 #1复制

6 2 3

输出 #1复制

6

说明/提示

0<N≤10^10 ,0 ≤M≤10^10,且N为偶数

思路:当我得到题目的时候,我手推了一下案例,然后呢,就马上得到了规律,即该张牌i的下一位置2*i%(n+1).然后得到2^m*i=l(mod(n+1)),然后就想到了逆元,但是呢,以前做的逆元题目都是右边为1 的情况,所以呢,我觉得这应该把l移到左边来,然后使右边变成1才可以用欧几里得扩展解出来,但是我不知道除过来之后是不是能够使2^m/l是一个整数,然后,就看题解去了,发现好像是用逆元,但是不是我那样用逆元,是求出2^m模上n+1的逆元,然后两边乘以这个逆元,就可以在左边把2^m给消掉,从而最终得到i的值,因为是2^10^10所以要用快速幂,但是,这个数仍然很大,所以就会用到快速乘。

Code:

#include<bits/stdc++.h>
using namespace std;
#define ll  long long
#define std std::ios::sync_with_stdio(0)
#define mem(a,b) memset(a,b,sizeof(a));
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
void read(ll& x)
{
	ll f = 1;         //f为符号位
	x = 0;
	char s = getchar();          //读入一个字符
	while (s > '9' || s < '0')      //处理空格。换行什么的,并且读入符号
	{
		if (s == '-')
			f = -1;
		s = getchar();
	}
	while (s >= '0' && s <= '9')     //不断地读入数字字符来计算得到数字
	{
		x = (x * 10 + s - '0') % mod;
		s = getchar();
	}
	x *= f;               //乘以符号即可得到数字
}
ll n;
ll mul(ll a, ll b, ll mod)      //因为数据最大是两个10的十次方相乘,会爆long long
{
	ll sum = 0;
	while (b)
	{
		if (b & 1)
			sum = (sum + a) % mod;
		b >>= 1;
		a = (a + a) % mod;
	}
	return sum;
}
ll qpow(ll a, ll b)
{
	ll sum = 1;
	while (b > 0)
	{
		if (b & 1)
			sum = mul(sum, a, n + 1);
		a = mul(a, a, n + 1);
		b = b >> 1;
	}
	return sum;
}
ll x, y;
void exgcd(ll a, ll b)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return;
	}
	exgcd(b, a % b);
	ll temp = x;
	x = y;
	y = temp - a / b * y;
}
int main()
{
	std;
	ll m, l;
	cin >> n >> m >> l;
	ll a = qpow(2, m);
	exgcd(a, n + 1);
	x = (x % (n + 1) + n + 1) % (n + 1);
	cout << mul(x,l,n+1) << endl;
	return 0;
}

 其中较为重要的有快速幂:

ll mod;
ll qpow(ll a, ll b)
{
	ll sum = 1;
	while (b)
	{
		if (b & 1)
			sum = sum * a%mod;
		b >>= 1;
		a = a * a % mod;
	}
	return sum;
}

快速乘:

ll mod;
ll qpow(ll a, ll b)
{
	ll sum = 0;   //因为后面是加,所以一开始为0
	while (b)
	{
		if (b & 1)
			sum = (sum + a) % mod;
		b >>= 1;
		a = (a + a) % mod;
	}
	return sum;
}

欧几里得扩展:


ll x, y;
void exgcd(ll a, ll b)
{
	if (b == 0)  //在b=0时返回时因为在辗转相除法中终止条件也为b=0,
	{
		x = 1;      //返回x=1,y=0是因为当b=0时,要使ax+by=gcd(a,b)时成立,x,y一定为1,0
		y = 0;
		return;
	}
	exgcd(b, a % b);    //更新x,y,因为是递归,所以上一个的x,y由下一个来决定
	ll temp = x;  //这是下一个的x
	x = y;    //把下一个的y赋值给这一个的x
	y = temp - a / b * y;    //计算得到这一个的y
}    //最后x就是a在模b的逆元


有时候求得逆元为负,而题目要求最小正整数解
我们可以
x=(x%mod+mod)%mod;

既然讲到了求逆元,还有就是快速幂求逆元;

对于任意一个
a=b(%mod)
  
x=qpow(a,b-2)%mod;

条件是b与mod互质即最大公约数为1;

然后就是线性求1-n的数得逆元

const int maxn = 1e6 + 10;
ll ex[maxn],p;
for (int i = 2; i <= n; i++)
{
	ex[i] = (p - (p / i)) * ex[p%i] % mod;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值