排队接水问题(C++、贪心)

这是一个关于算法与设计的讨论题,涉及经典的贪心问题。给定n个人和r个水龙头,每个人的接水时间不同。通过按接水时间从小到大排序并分配到水龙头,找到使总时间最小的方案。程序使用优先队列(小顶堆)实现,先将人按接水时间排序,再分配到水龙头,最后累加各队列总时间得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法与设计课上的一个讨论题,一个比较经典的贪心问题

题目描述(大概是这个意思吧,如果有误请大家务必指正)
现在有n个人排队去r个水龙头口打水,他们接满水的时间分别是t1,t2,t3…tn(都是整数),怎样安排他们打水的顺序才能让他们花费的总时间最少?

输入1:

4 2
2 4 5 6

输出1:

23

输入2:

7 3
2 3 1 6 9 4 5

输出2:

41

思路:按打水时间从小到大的顺序将所有人排序,接着确定好每个接水口前的队伍的排列顺序,也就是找出每个人应该排在哪个接水口和排在第几位(题目稍微复杂的地方就在这里),然后分别计算出每个队伍的用时,将所有队伍的用时累加起来就可以得到题目中所要求出的总用时

#include<bits/stdtr1c++.h>
using namespace std;
priority_queue<int, vector<int>, greater<int>> q; //定义优先队列(小顶堆,元素从小到大排列)
int main() {
	int n, r, t;                    //其中n为接水人数,r为接水口的数量
	cin >> n >> r;
	for (int i = 0; i < n; i++) {
		cin >> t;                   //输入当前这个人的接水时间
		q.emplace(t);               //将接水时间存入优先队列
	}
	vector<int> v[100];             //使用二维vector数组存放在每个接水口排队的人
	int flag = 0, k = 0;            //flag用于判断当前是否应该从第一队重新插入
	for (int i = 0; i < n; i++) {
		if (flag == r) {            //当flag值等于接水口数量值的时候,当前的人需要从第一队重新插入
			flag = 0;               //flag归0
			k = 0;                  //队伍重新回到第一队,因为第一队的vector下标实际为0,所以让k也归0
		}
		v[k].emplace_back(q.top()); //按顺序将优先级队列中等待的人插入他应该排的那个队伍
		q.pop();                    //插入之后让当前的人出队
		flag++;                     //flag值加1
		k++;                        //队伍的序号加1
	}
	int sum_water = 0;              //sum_water为所有队伍中所有人的等待时间与打水时间之和,即总时间
	for (int i = 0; i < r; i++) {   //遍历每个队列
		int sum_wait = 0;           //sum_wait临时储存当前队列中所有人花费的时间
		for (auto x : v[i]) {
			sum_wait += x;
			sum_water += sum_wait;  //在循环中将时间累加,和算前缀和很像
		}
	}
	cout << sum_water;              //输出结果
	return 0;
}
### Java 实现排队接水算法 对于单个水龙头的情况,处理逻辑相对简单。如果存在唯一的一个水龙头,则总的等待时间为所有人的接水量之和[^2]。 ```java if (m == 1) { int totalTime = 0; for (int i = 0; i < n; i++) { totalTime += w[i]; } } ``` 然而,在多个水龙头的情况下,可以采用更复杂的调度策略来优化整个过程的时间效率。一种常见的做法是利用优先级队列(最小堆),每次总是让当前剩余最少时间完成的人去下一个可用的水龙头处继续接水,从而使得整体耗时最短。 下面是一个完整的Java程序示例: ```java import java.util.PriorityQueue; public class WaterFilling { public static int minTimeToFill(int[] waterNeeds, int numTaps) { if (numTaps >= waterNeeds.length) return Math.max(waterNeeds); PriorityQueue<Integer> pq = new PriorityQueue<>(); // 初始化前几个水龙头的状态 for (int i = 0; i < numTaps; ++i) { pq.offer(waterNeeds[i]); } // 处理剩下的需求 for (int i = numTaps; i < waterNeeds.length; ++i) { Integer shortestRemainingTime = pq.poll(); shortestRemainingTime += waterNeeds[i]; pq.offer(shortestRemainingTime); } // 找到最大值作为最终结果 int maxTime = 0; while (!pq.isEmpty()) { maxTime = Math.max(maxTime, pq.poll()); } return maxTime; } public static void main(String[] args) { int[] needs = {5, 4, 7}; // 各个人所需的接水量 int taps = 2; // 可用的水龙头数量 System.out.println(minTimeToFill(needs, taps)); } } ``` 此代码片段展示了如何通过维护一个大小固定的小根堆来模拟多人同时使用不同速度的水龙头进行接水的过程,并计算出所有人完成接水所需要的最短时间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值