python深度学习记录
一点点学习笔记,仅代表个人看法。如有错点、疑点,请批评指正。
殇小气
就这
展开
-
池化层基础
池化层基础池化层:一种形式的降采样。池化:是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,也在一定程度 上控制了过拟合。面池化层的引入是依照人的视觉系统对视觉输入对象进行降维和抽象。例如一个4x4的矩形区域压缩成2x2的区域4x4区域:15835816531212032x2区域:8853以坐标说明4X4区域:X:0-1; Y:0原创 2021-03-16 21:58:15 · 651 阅读 · 0 评论 -
卷积基础概念
卷积神经网络CNN的基本概念神经元结构:由一个线性函数和一个非线性的激活函数构成。激活函数的作用是改变数据的线性关系,并且将输入数据映射在某个范围内,防止数据过大溢出。全连接:每一层的每个神经元都与下一层的每个神经元相连,所有特征都要通过网络计算并传播下去。缺点:1).所有神经元都要与下层的神经元有关系,百不管它们相隔多远;2).计算量大。实际上,图片识别中首先找到的是各部分的边缘和轮廓,然后再要查看图片中的数据 和这些边缘轮廓的关系(基本思路)。卷积核:用来检测某一方面的特征,比如垂直边界、水平边界原创 2021-03-21 11:20:17 · 2350 阅读 · 1 评论 -
Pytorch之波士顿房价预测
Pytorch之波士顿房价预测一、包库准备import torchimport torch.nn as nn #帮助我们创建和训练神经网络from torch.optim import SGD #导入实现随机梯度下降算法import torch.utils.data as Data #导入数据集from sklearn.datasets import load_boston #导入波士顿房价数据from sklearn.preprocessing import StandardScal原创 2021-03-21 11:21:50 · 5404 阅读 · 2 评论 -
AlexNet原理及代码实现
AlexNet 原理及代码实现基础介绍:原始图像:256X256X3图像处理:数据增强1. 随机剪切256X256x3<=>224x224x32. 224x224旋转,位置变换3. 图像增大:224x224<=>227x2274. 实际输入AlexNet网络:227x227x3(可以通过padding实现)输入图像为3通道,之后采用双GPU并行运算基础步骤:卷积层---->relu---->池化层---->norm层---->全连接层原创 2021-03-28 12:39:16 · 503 阅读 · 0 评论 -
神经网络(CNN)
神经网络(CNN)神经网络主要有三个部分组成, 分别为:网络结构 —— 描述神经元的层次与连接神经元的结构.激活函数(激励函数) —— 用于加入非线性的因素, 解决线性模型所不能解决的问题.参数学习方法的选择(一般为权重值W和偏置项b)一、CNN领域划分图像处理领域图像识别图像标注图像主题生成图像内容生成…视频处理领域视频分类视频标准视频预测…自然语言处理(NLP)领域对话生成文本生成机器翻译…其它方面机器人控制游戏参数控制…原创 2021-03-29 14:10:40 · 560 阅读 · 0 评论 -
Pytorch之MNIST
一、导入包库import torchimport torchvision as tvfrom torch import nnfrom torch.utils.data import DataLoaderimport torchvision.transforms as Timport torch.nn.functional as F二、超参数# 超参数BATCH_SIZE = 128 # 一次放多少image# 检测cuda or cpuDEVICE = torch.device原创 2021-04-04 23:30:19 · 128 阅读 · 0 评论 -
Pytorch之CIFAR10
CIFAR10该数据集共有60000张彩色图像,每张图像是32x32x3,分为10个类,第类6000张图。其中50000张用于训练,构成5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据 里,取自10类中的每一类,每一类随机取1000张。10类分别是:1.airplane, 2.automobile, 3.bird, 4.cat, 5.deer, 6.dog, 7.frog, 8.horse, 9.ship, 10.truck一、导入包库import torch原创 2021-04-04 23:40:45 · 924 阅读 · 1 评论 -
Pytorch--VGG16模型代码
import torchimport torch.nn as nnclass VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.features = nn.Sequential( # conv1 nn.Conv2d(3, 64, 3, 1, 1), nn.BatchNorm2d(64, 0.9),原创 2021-04-08 15:19:54 · 1861 阅读 · 2 评论 -
Pytorch之Tensor与NumPy数据类型转换
Tensor与NumPy数据类型基础转换Tensor转NumPyimport torch# inputx = torch.ones(5)y = x.numpy()# outputprint(x)tensor([1., 1., 1., 1., 1.])print(y)array([1., 1., 1., 1., 1.], dtype=float32)print(x + 1)tensor([2., 2., 2., 2., 2.])print(y + 1)[2. 2. 2. 2. 2.原创 2021-04-09 20:43:57 · 751 阅读 · 0 评论 -
VGG实现CIFAR10(PYTORCH)
VGG实现CIFAR10(PYTORCH)import torchimport torch.nn as nnfrom torch import optimfrom torch.utils.data import DataLoaderfrom torchvision import transformsfrom torchvision import datasetsfrom tqdm import tqdmtransform = transforms.Compose([ transfo原创 2021-04-12 18:39:35 · 1115 阅读 · 1 评论 -
Pytorch实现ResNet
Pytorch实现ResNet一、ResNet网络介绍ResNet在2015年被提出,在ImageNet比赛classification任务上获得第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。由于它“简单与实用”并存,之后很多方法都建立在ResNet50或者ResNet101的基础上完成的,检测,分割,识别等领域里得到广泛的应用。ResNet残差结构图:ResNet网络结构参数列表:ResNet网络的高点提出residual结构(残差结构)原创 2021-04-17 15:02:36 · 6625 阅读 · 3 评论 -
transforms小技巧
transforms.RandomResizedCrop(224)随机裁剪transforms.RandomHorizontalFlip()随机水平翻转tansforms.ToTensor()转换成Tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))transforms.Resize((224, 224))压缩成224*224os.getcwd()获取当前文件的根目录os.path.join('a' + 'b')将a和b路径连接原创 2021-04-17 19:42:53 · 438 阅读 · 0 评论 -
SSD学习记录
SSD学习记录文章目录SSD学习记录前言环境配制及相关资料网络结构网络基础介绍先验框介绍主干网络介绍SSD模型构建获得预测框预测过程训练部分前言通过对目标确定四个参数,分别是目标中心点的x轴、y轴坐标,目标的框的高、宽,来确定目标的位置。SSD首先会将图片调整成300x300的大小,为了防止失真,会在图像边缘加上灰条。然后将图片分成1x1、 3x3、 5x5、 10x10、 19x19、 38x38,6种不同的大小的网格。网格分割越小,越有利于检测较小的目标,且每个网格中心负责每个目标。总原创 2021-05-26 12:25:30 · 511 阅读 · 0 评论