1. 高精度算法之高精度加法
#include<bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
void plus_number(){
int len;
len=max(strlen(string1),strlen(string2));
//len=strlen(string1)>strlen(string2)?strlen(string1):strlen(string2);
//找到输入的数字里长度最长的那个
memset(number1,0,sizeof(number1));
memset(number2,0,sizeof(number2));
//将输入的字符串初始化为0
for (int i=strlen(string1)-1;i>=0;i--)
number1[strlen(string1)-i-1]=string1[i]-'0';
for (int i=strlen(string2)-1;i>=0;i--)
number2[strlen(string2)-i-1]=string2[i]-'0';
//将字符串转化为整数型数组,记得将数组倒过来存储,便于后续操作
for (int i=0;i<len;i++){
number1[i]+=number2[i];
number1[i+1]+=number1[i]/10;
number1[i]=number1[i]%10;
//对应位的数据相加,如果加和大于9,则向前进一位,同时对10取余
}
if (number1[len]!=0) len++;
//检查最大位是否相加后有产生进位
while(number1[len-1]==0&&len>1) len--;
//去掉0
for (int i=len-1;i>=0;i--){
cout<<number1[i];
}
cout<<endl;
//输出结果
}
int main() {
cin>>string1>>string2;
plus_number();
return 0;
}
2. 高精度算法之高精度减法
#include<bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
void sub_number(){
int len;
bool flag=false;
len=max(strlen(string1),strlen(string2));
//len=strlen(string1)>strlen(string2)?strlen(string1):strlen(string2);
memset(number1,0,sizeof(number1));
memset(number2,0,sizeof(number2));
if (strlen(string1)<strlen(string2)||(strlen(string1)==strlen(string2)&&strcmp(string1,string2)<0)){
flag=true;//记录是否为负数
for (int i=strlen(string2)-1;i>=0;i--)
number1[strlen(string2)-i-1]=string2[i]-'0';
for (int i=strlen(string1)-1;i>=0;i--)
number2[strlen(string1)-i-1]=string1[i]-'0';
}else{
for (int i=strlen(string1)-1;i>=0;i--)
number1[strlen(string1)-i-1]=string1[i]-'0';
for (int i=strlen(string2)-1;i>=0;i--)
number2[strlen(string2)-i-1]=string2[i]-'0';
}
//将数据转换为大数减小数
for (int i=0;i<len;i++){
number1[i]-=number2[i];
if (number1[i]<0){
number1[i+1]--;
number1[i]+=10;
}
//数据相减,如果减得的值为负数,就从前面一位“借十”
}
while(number1[len-1]==0&&len>1) len--;
//确认答案的长度
if (flag) cout<<"-";
for (int i=len-1;i>=0;i--){
cout<<number1[i];
}
cout<<endl;
//输出答案
}
int main() {
cin>>string1>>string2;
sub_number();
return 0;
}
3. 高精度算法之高精度乘低精度
#include <bits/stdc++.h>
using namespace std;
char string1[100];
int number[100],low;
void multiply(){
int len=strlen(string1);
memset(number,0,sizeof(number));
for (int i=0;i<len;i++)
number[len-i-1]=string1[i]-'0';
//数字倒置,与上面两种方法相似
int carry=0;//进位
for (int i=0;i<len;i++){
number[i]=number[i]*low+carry;
carry=number[i]/10;
number[i]%=10;
}
//乘法的奥义就是被乘的那个数的每一位总是要乘以乘数
//所以有“number[i]=number[i]*low+carry;”
if (carry!=0){
//这里主要是在处理最后一个进位
//因为他可能出现的情况有多种:
//carry大于100...之类的
//所以还需要再处理一下
number[len]=carry;
len++;
while(number[len-1]>=10){
number[len]=number[len-1]/10;
number[len-1]%=10;
len++;//注意长度
}
}
while (number[len-1]==0&&len>1){
len--;
}
for (int i=len-1;i>=0;i--)
cout<<number[i];
cout<<endl;//输出答案
}
int main() {
cin>>string1>>low;
multiply();
return 0;
}
4. 高精度算法之高精度乘以高精度
#include <bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100],ans[10000];
void multiply(){
int len1=strlen(string1);
int len2=strlen(string2);
memset(number2,0,sizeof(number1));
memset(number1,0,sizeof(number1));
memset(ans,0,sizeof(number1));
for (int i=0;i<len1;i++)
number1[len1-i-1]=string1[i]-'0';
for(int i=0;i<len2;i++)
number2[len2-i-1]=string2[i]-'0';
for (int i=0;i<len1;i++){
for (int j=0;j<len2;j++){
ans[i+j]+=number1[i]*number2[j];
//这个地方可能有点难以理解,拿张草稿纸扒拉两下,你会明白的
}
}
int l=len1+len2-1;
for (int i=0;i<l;i++){
ans[i+1]+=ans[i]/10;
ans[i]%=10;
}
if (ans[l]>0) l++;
while (ans[l-1]>=10){
ans[l]=ans[l-1]/10;
ans[l-1]%=10;
l++;
}
while (ans[l-1]==0&&l>1) l--;
for (int i=l-1;i>=0;i--)
cout<<ans[i];
cout<<endl;
}
int main() {
cin>>string1>>string2;
multiply();
return 0;
}
5. 高精度算法之高精度除以高精度
#include <bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
int len1,len2;
inline bool cmp(){
//用于比较两个数的大小关系
// 大于或等于就返回真值,否则就为假值
if (len1>len2) return true;
if (len1<len2) return false;
for(int i=len1-1;i>=0;i--){
if (number1[i]>number2[i]) return true;
if (number1[i]<number2[i]) return false;
}
return true;
}
void division(){
memset(number1,0,sizeof(number1));
memset(number2,0,sizeof(number1));
len1=strlen(string1);
len2=strlen(string2);
for (int i=len1-1;i>=0;i--)
number1[len1-i-1]=string1[i]-'0';
for (int i=len1-1;i>=0;i--)
number2[len1-i-1]=string2[i]-'0';
int ans=0;
while (cmp()){
ans++;
for (int i=0;i<len1;i++){
number1[i]-=number2[i];
if (number1[i]<0){
number1[i]+=10;
number1[i+1]--;
}
}
while (number1[len1]==0&&len1>1) len1--;
}
cout<<ans;
}
int main() {
cin>>string1>>string2;
division();
return 0;
}
出处:C语言高精度算法 - 五葉魔法书
版权:本文《C 语言高精度算法》版权归作者所有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任