高精度算法

 1. 高精度算法之高精度加法

#include<bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
void plus_number(){
    int len;
    len=max(strlen(string1),strlen(string2));
    //len=strlen(string1)>strlen(string2)?strlen(string1):strlen(string2);
    //找到输入的数字里长度最长的那个
    memset(number1,0,sizeof(number1));
    memset(number2,0,sizeof(number2));
    //将输入的字符串初始化为0
    for (int i=strlen(string1)-1;i>=0;i--)
        number1[strlen(string1)-i-1]=string1[i]-'0';
    for (int i=strlen(string2)-1;i>=0;i--)
        number2[strlen(string2)-i-1]=string2[i]-'0';
    //将字符串转化为整数型数组,记得将数组倒过来存储,便于后续操作
    for (int i=0;i<len;i++){
        number1[i]+=number2[i];
        number1[i+1]+=number1[i]/10;
        number1[i]=number1[i]%10;
        //对应位的数据相加,如果加和大于9,则向前进一位,同时对10取余
    }
    if (number1[len]!=0) len++;
    //检查最大位是否相加后有产生进位
    while(number1[len-1]==0&&len>1) len--;
    //去掉0
    for (int i=len-1;i>=0;i--){
        cout<<number1[i];
    }
    cout<<endl;
    //输出结果
}
int main() {
    cin>>string1>>string2;
    plus_number();
    return 0;
}

2. 高精度算法之高精度减法

#include<bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
void sub_number(){
    int len;
    bool flag=false;
    len=max(strlen(string1),strlen(string2));
    //len=strlen(string1)>strlen(string2)?strlen(string1):strlen(string2);
    memset(number1,0,sizeof(number1));
    memset(number2,0,sizeof(number2));
    if (strlen(string1)<strlen(string2)||(strlen(string1)==strlen(string2)&&strcmp(string1,string2)<0)){
        flag=true;//记录是否为负数
        for (int i=strlen(string2)-1;i>=0;i--)
            number1[strlen(string2)-i-1]=string2[i]-'0';
        for (int i=strlen(string1)-1;i>=0;i--)
            number2[strlen(string1)-i-1]=string1[i]-'0';
    }else{
        for (int i=strlen(string1)-1;i>=0;i--)
            number1[strlen(string1)-i-1]=string1[i]-'0';
        for (int i=strlen(string2)-1;i>=0;i--)
            number2[strlen(string2)-i-1]=string2[i]-'0';
    }
    //将数据转换为大数减小数
    for (int i=0;i<len;i++){
        number1[i]-=number2[i];
        if (number1[i]<0){
            number1[i+1]--;
            number1[i]+=10;
        }
        //数据相减,如果减得的值为负数,就从前面一位“借十”
    }
    while(number1[len-1]==0&&len>1) len--;
    //确认答案的长度
    if (flag) cout<<"-";
    for (int i=len-1;i>=0;i--){
        cout<<number1[i];
    }
    cout<<endl;
    //输出答案
}
int main() {
    cin>>string1>>string2;
    sub_number();
    return 0;
}

3. 高精度算法之高精度乘低精度 

#include <bits/stdc++.h>
using namespace std;
char string1[100];
int number[100],low;
void multiply(){
    int len=strlen(string1);
    memset(number,0,sizeof(number));
    for (int i=0;i<len;i++)
        number[len-i-1]=string1[i]-'0';
        //数字倒置,与上面两种方法相似
    int carry=0;//进位
    for (int i=0;i<len;i++){
        number[i]=number[i]*low+carry;
        carry=number[i]/10;
        number[i]%=10;
    }
    //乘法的奥义就是被乘的那个数的每一位总是要乘以乘数
    //所以有“number[i]=number[i]*low+carry;”
    if (carry!=0){
        //这里主要是在处理最后一个进位
        //因为他可能出现的情况有多种:
        //carry大于100...之类的
        //所以还需要再处理一下
        number[len]=carry;
        len++;
        while(number[len-1]>=10){
            number[len]=number[len-1]/10;
            number[len-1]%=10;
            len++;//注意长度
        }
    }
    while (number[len-1]==0&&len>1){
        len--;
    }
    for (int i=len-1;i>=0;i--)
        cout<<number[i];
    cout<<endl;//输出答案
}
int main() {
    cin>>string1>>low;
    multiply();
    return 0;
}

 4. 高精度算法之高精度乘以高精度

#include <bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100],ans[10000];
void multiply(){
    int len1=strlen(string1);
    int len2=strlen(string2);
    memset(number2,0,sizeof(number1));
    memset(number1,0,sizeof(number1));
    memset(ans,0,sizeof(number1));
    for (int i=0;i<len1;i++)
        number1[len1-i-1]=string1[i]-'0';
    for(int i=0;i<len2;i++)
        number2[len2-i-1]=string2[i]-'0';
    for (int i=0;i<len1;i++){
        for (int j=0;j<len2;j++){
            ans[i+j]+=number1[i]*number2[j];
            //这个地方可能有点难以理解,拿张草稿纸扒拉两下,你会明白的
        }
    }
    int l=len1+len2-1;
    for (int i=0;i<l;i++){
        ans[i+1]+=ans[i]/10;
        ans[i]%=10;
    }
    if (ans[l]>0) l++;
    while (ans[l-1]>=10){
        ans[l]=ans[l-1]/10;
        ans[l-1]%=10;
        l++;
    }
    while (ans[l-1]==0&&l>1) l--;
    for (int i=l-1;i>=0;i--)
        cout<<ans[i];
    cout<<endl;
}
int main() {
    cin>>string1>>string2;
    multiply();
    return 0;
}

5. 高精度算法之高精度除以高精度

#include <bits/stdc++.h>
using namespace std;
char string1[100],string2[100];
int number1[100],number2[100];
int len1,len2;

inline bool cmp(){
    //用于比较两个数的大小关系
    // 大于或等于就返回真值,否则就为假值
    if (len1>len2) return true;
    if (len1<len2) return false;
    for(int i=len1-1;i>=0;i--){
        if (number1[i]>number2[i]) return true;
        if (number1[i]<number2[i]) return false;
    }
    return true;
}

void division(){
    memset(number1,0,sizeof(number1));
    memset(number2,0,sizeof(number1));
    len1=strlen(string1);
    len2=strlen(string2);
    for (int i=len1-1;i>=0;i--)
        number1[len1-i-1]=string1[i]-'0';
    for (int i=len1-1;i>=0;i--)
        number2[len1-i-1]=string2[i]-'0';
    int ans=0;
    while (cmp()){
        ans++;
        for (int i=0;i<len1;i++){
            number1[i]-=number2[i];
            if (number1[i]<0){
                number1[i]+=10;
                number1[i+1]--;
            }
        }
        while (number1[len1]==0&&len1>1) len1--;
    }
    cout<<ans;
}

int main() {
    cin>>string1>>string2;
    division();
    return 0;
}

出处:C语言高精度算法 - 五葉魔法书
版权:本文《C 语言高精度算法》版权归作者所有
转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值