博弈——ICE公平组合游戏(简单整理结论)

公平组合游戏特点

1.由两名玩家组成。
2.游戏的状态为有限的。
3.两人轮流走,当有一玩家不可继续时游戏结束。

巴什博弈

1.问题:一堆n个物品,两人轮流取(1~m个),取光者胜。
2.同余定理:n=k*(m+1)+r,先手取走r个,无论后手取走多少个,只要先手取的数目和为(m+1),则先手必赢。
//分析:
(1)n<=m时,先手必赢。
(2) n=m+1时,无论先手拿多少个,剩余的一定大于1小于m,即后手必赢。
3.模板:

if (n%(m+1))
return 1;//先手赢
else
return 0;//后手赢

威佐夫博弈

1.问题:两堆n个物品,两人轮流取一堆中的至少一个或两堆中的相同多个物品,取光者胜。
2.黄金分割比:差值*黄金分割比==最小值,则后手赢,反之先手赢。
3.模板:

double r=sqrt(5)+1)/2//黄金分割比
int d=abs(a-b)*r;
if(d!=min(a,b))
return 1;//先手赢
else
return 0;//后手赢
尼姆博弈

1.问题:n堆物品,两人轮流取至少一个物品,取光者胜。
2.结论:讲n堆物品全部异或运算,若结果为0则必败,反之则必胜。
3.模板:

int m=0;
for(int i=1;i<=n;i++)
m=m^arr[i];
if(m==0)
return 0;//后手胜
else
return 1;//先手胜
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值