扩展欧几里得算法(线性同余方程,中国剩余定理)

877. 扩展欧几里得算法

给定 n

对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)

输入格式

第一行包含整数 n

接下来 n

行,每行包含两个整数 ai,bi

输出格式

输出共 n

行,对于每组 ai,bi,求出一组满足条件的 xi,yi

,每组结果占一行。

本题答案不唯一,输出任意满足条件的 xi,yi

均可。

数据范围

1≤n≤105

,
1≤ai,bi≤2×109

输入样例:

2
4 6
8 18

输出样例:

-1 1
-2 1

 * a*x1+b*y1=gcd(a,b);
 * b*x2+a%b*y2=gcd(b,a%b);
 * because  gcd(a,b)==gcd(b,a%b);
 * so  a*x1+b*y1=b*x2+a%b*y2;
 *   a*x1 + b*y1 = b*x2 + (a - floor(a/b)*b)*y2
 *  a*(x1 - y2) = b(x2 - floor(a/b)*y2 - y1)
 
 * => x1=y2; y1=x2-a/b*y2;

/**
 * a*x1+b*y1=gcd(a,b);
 * b*x2+a%b*y2=gcd(b,a%b);
 * because  gcd(a,b)==gcd(b,a%b);
 * so  a*x1+b*y1=b*x2+a%b*y2;
 *   a*x1 + b*y1 = b*x2 + (a - floor(a/b)*b)*y2
 *  a*(x1 - y2) = b(x2 - floor(a/b)*y2 - y1)
 * 
 * => x1=y2; y1=x2-a/b*y2;
*/


#include <iostream>

using namespace std;

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    
    int g=exgcd(b,a%b,x,y);
    int temp=x; //存放x的值
    x=y; //用得到新的x,y的值递推上一层的x,y的值,改变x的值
    y=temp-a/b*y; //改变y的值
    return g;
}

int main()
{
    int n;
    cin >> n;
    while (n -- )
    {
        int a, b;
        cin >> a >> b;
        int x,y;
        exgcd(a,b,x,y);
        cout << x << ' ' <<  y << endl;
    }
    return 0;
}

878. 线性同余方程

给定 n

组数据 ai,bi,mi,对于每组数求出一个 xi,使其满足 ai×xi≡bi(modmi)

,如果无解则输出 impossible

输入格式

第一行包含整数 n

接下来 n

行,每行包含一组数据 ai,bi,mi

输出格式

输出共 n

行,每组数据输出一个整数表示一个满足条件的 xi

,如果无解则输出 impossible

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在 int

范围之内。

数据范围

1≤n≤105

,
1≤ai,bi,mi≤2×109

输入样例:

2
2 3 6
4 3 5

输出样例:

impossible
-3

 * a*x 与 b 模 m同余;则a*x=m*k+b;
 * 即 a*x-m*k=b;
 * 令y=-k,所以上式变为 a*x+m*y=b;
 * 只要b%gcd(a,m)==0,则有解,否则无解。

/**
 * a*x 与 b 模 m同余;则a*x=m*k+b;
 * 即 a*x-m*k=b;
 * 令y=-k,所以上式变为 a*x+m*y=b;
 * 只要b%gcd(a,m)==0,则有解,否则无解。
*/


#include <iostream>

using namespace std;

typedef long long LL;

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    
    int g=exgcd(b,a%b,x,y);
    int temp=x; //存放x的值
    x=y; //用得到新的x,y的值递推上一层的x,y的值,改变x的值
    y=temp-a/b*y; //改变y的值
    return g;
}

int main()
{
    int n;
    cin >> n;
    while (n -- )
    {
        int a,b,m;
        cin >> a >> b >>m;
        int x,y;
        int d=exgcd(a,m,x,y);
        if(b%d)
            puts("impossible");
        else
            cout << (LL)x*b/d%m << endl;
    }
    return 0;
}

204. 表达整数的奇怪方式

给定 2n

个整数 a1,a2,…,an 和 m1,m2,…,mn,求一个最小的非负整数 x,满足 ∀i∈[1,n],x≡mi(mod ai)

输入格式

第 1

行包含整数 n

第 2…n+1

行:每 i+1 行包含两个整数 ai 和 mi

,数之间用空格隔开。

输出格式

输出最小非负整数 x

,如果 x 不存在,则输出 −1。
如果存在 x,则数据保证 x 一定在 64

位整数范围内。

数据范围

1≤ai≤231−1

,
0≤mi<ai
1≤n≤25

输入样例:

2
8 7
11 9

输出样例:

31

* n个方程,每次合并两个方程,直到还剩下一个方程即为结果。
 * x 与 m1 模 a1 同余,x 与 m2 模 a2 同余;
 * 所以 x=a1*k1+m1; (1)
 *      x=a2*k2+m2; (2)
 * 即 a1*k1+m1=a2*k2+m2  
 * => a1*k1 - a2*k2 =m2-m1 ; (3)
 * 求出满足a1*y1 - a2*y2 = gcd(a1,-a2) 的解;
 * 如果(m2-m1)%gcd(a1,-a2)!=0,则无解;
 * 否则有解,此时 k1=y1*(m2-m1)/gcd(a1,-a2);
 * 不难而知:k1=k1+a2/gcd*k, k2=k2+a1/gcd*k;(k 为任何整数) ,(带入(3)式能证);
 * 将k1 带入(1),所以x=a1*(k1+a2/gcd*k)+m1 = a1*a2/gcd*k+a1*k1+m1;
 * 令 a0=a1*a2/gcd,m0=a1*k1+m1; 可得到 x=a0*k+m0,这就是(1)式与(2)式的合并结果。

/**
 * n个方程,每次合并两个方程,直到还剩下一个方程即为结果。
 * x 与 m1 模 a1 同余,x 与 m2 模 a2 同余;
 * 所以 x=a1*k1+m1; (1)
 *      x=a2*k2+m2; (2)
 * 即 a1*k1+m1=a2*k2+m2  
 * => a1*k1 - a2*k2 =m2-m1 ; (3)
 * 求出满足a1*y1 - a2*y2 = gcd(a1,-a2) 的解;
 * 如果(m2-m1)%gcd(a1,-a2)!=0,则无解;
 * 否则有解,此时 k1=y1*(m2-m1)/gcd(a1,-a2);
 * 不难而知:k1=k1+a2/gcd*k, k2=k2+a1/gcd*k;(k 为任何整数) ,(带入(3)式能证);
 * 将k1 带入(1),所以x=a1*(k1+a2/gcd*k)+m1 = a1*a2/gcd*k+a1*k1+m1;
 * 令 a0=a1*a2/gcd,m0=a1*k1+m1; 可得到 x=a0*k+m0,这就是(1)式与(2)式的合并结果。
*/



#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    
    LL g=exgcd(b,a%b,x,y);
    LL temp=x; //存放x的值
    x=y; //用得到新的x,y的值递推上一层的x,y的值,改变x的值
    y=temp-a/b*y; //改变y的值
    return g;
}

int main()
{
    int n;
    cin >> n;
    LL a1,m1;
    cin >> a1 >> m1;
    for(int i=1;i<n;++i)
    {
        LL a2,m2;
        cin >> a2 >> m2;
        LL k1,k2;
        LL d=exgcd(a1,-a2,k1,k2);
        if( (m2-m1)%d )
        {
            cout << -1 << endl;
            return 0;
        }
        else
        {
            k1*=(m2-m1)/d;  //先将其扩大 (m2-m1)/d 倍。
            LL mod=a2/d;
            k1=(k1%mod+mod)%mod;  //得到k1的最小正整数解
            
            m1=a1*k1+m1;   
            a1=a1/d*a2;  
        }
    }
    
    a1=abs(a1);  //a1需要取绝对值,模负数可能得到不正确的结果
    cout << (m1%a1+a1)%a1 << endl;
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值