背包问题(01背包,完全背包,多重背包,用二进制优化的多重背包,分组背包)

来几张乐色的笔记,供自己以后方便复习:

 

 

 

 

 

 

 

 

2. 01背包问题

有 N

件物品和一个容量是 V

的背包。每件物品只能使用一次。

第 i

件物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品数量和背包容积。

接下来有 N

行,每行两个整数 vi,wi,用空格隔开,分别表示第 i

件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000


0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

/**
 * 状态设计:dp[i][j] : 表示不超过前i件物品,且容量不超过j 的最大价值
 * 方案;
 * 状态转移方程:dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i]] +c[i]);
 *
 * 由于每一次更新dp[i][j]的值都只用到了第一维的值,所以我们可以只要一个
 * 一位数组来存储,这个一维数组称为滚动数组;
 * 但是当j作为背包的容量时,j从小到大或者从大到小的选择不当时,状态
 * 转移方程就会发生错误;
 * 当需要用到滚动数组的时候,先求出状态转移方程的朴素方程,再将用滚动
 * 数组的状态转移方程转换朴素法,如果与朴素方法相同,则此用滚动数组优
 * 化的状态转移方程是为正确;
 *
 * 题目中的状态转移方程瞬息万变,应该掌握这种方法,理解这种思想,而
 * 不能去死记硬背;
*/

第一个:二维数组进行状态设计:

#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 1010;
int dp[maxn][maxn];
int w[maxn],c[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
        {
            if(j<w[i])
                dp[i][j] = dp[i-1][j];
            else
                dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i]]+c[i]);
        }
        
    cout << dp[n][v] << endl;
    return 0;
}

第二个:滚动数组优化

#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 1010;
int dp[maxn];
int w[maxn],c[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=v;j>=0;--j)
        {
            if(j<w[i])
                dp[j] = dp[j];
            else
                dp[j] = max(dp[j] , dp[j-w[i]]+c[i]);
        }
        
    cout << dp[v] << endl;
    return 0;
}

第三个:与第二个一样,中间把状态转移方程合并在了一起;

#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 1010;
int dp[maxn];
int w[maxn],c[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=v;j>=w[i];--j)
        {
                dp[j] = max(dp[j] , dp[j-w[i]]+c[i]);
        }
        
    cout << dp[v] << endl;
    return 0;
}

3. 完全背包问题

有 N

种物品和一个容量是 V

的背包,每种物品都有无限件可用。

第 i

种物品的体积是 vi,价值是 wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品种数和背包容积。

接下来有 N

行,每行两个整数 vi,wi,用空格隔开,分别表示第 i

种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000


0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

 

/**
 * 完全背包问题,每次考虑第i种物品的时候,能够选择若干件,所以在最开始
 * 求dp[i][j] 的最大值的时候,我们要把选择0,1,……,k件第i种物品的情况
 * 都要进行比较;
 * 这就是最初始的朴素代码:
 * for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
            for(int k=0;k*w[i]<=j;++k)
                dp[i][j] = max(dp[i][j],dp[i-1][j-k*w[i]]+k*c[i]);
    //注意状态转移方程并不是:
    //  dp[i][j] = max(dp[i-1][j],dp[i-1][j-k*w[i]]+k*c[i]);
    //因为 dp[i][j] = max{ dp[i-1][j-k*w[i]] + k*c[i] }(k=0,1,……,k);
    //比较 dp[i][j] 的最大值,那么max 的一个参数肯定是dp[i][j];
    // 但是又得和二重循环的状态转移方程区别开来看;
*/

    
// 三重循环的朴素方法:

/**
 * 完全背包问题,每次考虑第i种物品的时候,能够选择若干件,所以在最开始
 * 求dp[i][j] 的最大值的时候,我们要把选择0,1,……,k件第i种物品的情况
 * 都要进行比较;
 * 这就是最初始的朴素代码:
 * for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
            for(int k=0;k*w[i]<=j;++k)
                dp[i][j] = max(dp[i][j],dp[i-1][j-k*w[i]]+k*c[i]);
    //注意状态转移方程并不是:
    //  dp[i][j] = max(dp[i-1][j],dp[i-1][j-k*w[i]]+k*c[i]);
    //因为 dp[i][j] = max{ dp[i-1][j-k*w[i]] + k*c[i] }(k=0,1,……,k);
    //比较 dp[i][j] 的最大值,那么max 的一个参数肯定是dp[i][j];
    // 但是又得和二重循环的状态转移方程区别开来看;
*/ 
    
// 三重循环的朴素方法:

#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 1010;
int w[maxn],c[maxn];
int dp[maxn][maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
        {
            dp[i][j] = dp[i-1][j];  //不选第i种物品
            
            for(int k=1;k*w[i]<=j;++k)  //第i种物品选择若干种
                dp[i][j] = max(dp[i][j],dp[i-1][j-k*w[i]]+k*c[i]);
        }
                
    cout << dp[n][v] << endl;
    return 0;
}

// 二重循环的朴素方法:
/**
 * 因为 dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i]]+c[i] ,
 * dp[i-1][j-w[i]*2]]+2*c[i],……,)
 *
 * 又因为 dp[i][j-w[i]]=max(dp[i-1][j-w[i]] , dp[i-1][j-2*w[i]]+c[i]],
 * dp[i-1][j-3*w[i]]+2*c[i], ……,);
 * 所以 dp[i][j] = max(dp[i-1][j],dp[i][j-w[i]]);

*/

// 二重循环的朴素方法:
/**
 * 因为 dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i]]+c[i] , 
 * dp[i-1][j-w[i]*2]]+2*c[i],……,)
 * 
 * 又因为 dp[i][j-w[i]]=max(dp[i-1][j-w[i]] , dp[i-1][j-2*w[i]]+c[i]],
 * dp[i-1][j-3*w[i]]+2*c[i], ……,);
 * 所以 dp[i][j] = max(dp[i-1][j],dp[i][j-w[i]]);
*/

/**
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 2010;
int dp[maxn][maxn];
int w[maxn],c[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
        {
            if(j<w[i])
                dp[i][j]=dp[i-1][j];
            else
                dp[i][j]=max(dp[i-1][j],dp[i][j-w[i]]+c[i]);
        }
    
    cout << dp[n][v] << endl;
    return 0;
}
*/


// 滚动数组优化;
// dp[j] = max(dp[j],dp[j-w[i]]+c[i]);


// 滚动数组优化;
// dp[j] = max(dp[j],dp[j-w[i]]+c[i]);

#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 2010;
int dp[maxn];
int w[maxn],c[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i];
    
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
        {
            if(j<w[i])
                dp[j]=dp[j];
            else
                dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
        }
    
    cout << dp[v] << endl;
    return 0;
}

4. 多重背包问题 I

有 N

种物品和一个容量是 V

的背包。

第 i

种物品最多有 si 件,每件体积是 vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品种数和背包容积。

接下来有 N

行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i

种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100


0<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 * 由于每种物品有s[i]件可以选择,所以并不能优化成二重循环;
 * 这就和完全背包的三重循环朴素做法是差不多的思想,只是在第三个for循环
 * 那儿判断k是否没有超过s[i];

/**
 * 由于每种物品有s[i]件可以选择,所以并不能优化成二重循环;
 * 这就和完全背包的三重循环朴素做法是差不多的思想,只是在第三个for循环
 * 那儿判断k是否没有超过s[i];
*/

/**
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 110;
int w[maxn],c[maxn],s[maxn];
int dp[maxn][maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
        cin >> w[i] >> c[i] >> s[i];
        
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
            for(int k=0;k*w[i]<=j && k<=s[i];++k)   
                dp[i][j] = max(dp[i][j],dp[i-1][j-k*w[i]]+k*c[i]);
                
    cout << dp[n][v] << endl;
    return 0;
}
*/

 * 把多重背包切成 0 1 背包问题;
 *
    for(int j=1;j<=s;++j)   
        for(int k=v;k>=w;--k)
            dp[k]=max(dp[k],dp[k-w]+c);
            
    把s件相同的物体看成01背包中s种不同的物体,
    目的就是为了降低空间复杂度,时间复杂度是差不多的;

/**
 * 把多重背包切成 0 1 背包问题;
 * 
    for(int j=1;j<=s;++j)   
        for(int k=v;k>=w;--k)
            dp[k]=max(dp[k],dp[k-w]+c);
            
    把s件相同的物体看成01背包中s种不同的物体,
    目的就是为了降低空间复杂度,时间复杂度是差不多的;
*/


#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 110;
int w[maxn],c[maxn],s[maxn];
int dp[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
    {
        int w,c,s;
        cin >> w >> c >> s;
        
        for(int j=1;j<=s;++j)   //把s件相同的物体看成01背包种s种不同的物体,目的就是为了降低空间复杂度,时间复杂度是差不多的
            for(int k=v;k>=w;--k)
                dp[k]=max(dp[k],dp[k-w]+c);
    }
                
    cout << dp[v] << endl;
    return 0;
}

5. 多重背包问题 II

有 N

种物品和一个容量是 V

的背包。

第 i

种物品最多有 si 件,每件体积是 vi,价值是 wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品种数和背包容积。

接下来有 N

行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i

种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N≤1000


0<V≤2000
0<vi,wi,si≤2000

提示:

本题考查多重背包的二进制优化方法。

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

 

 * 状态设计:dp[i][j]:从前i种物品中选择不超过容量j的集合中价值最大的
 * 方案;
 * 状态计算:dp[i][j] = { dp[i-1][j-k*w[i]] + k*c[i] };
 *
 * 每种物品有s件,每种物品选择k件,难道k真的需要从 0 枚举到 s 吗?
 * 其实并不需要,我们可以用二进制来优化;
 * 因为32位的二进制位可以表示的数是(0 —— 2^32 -1),那么我们用合适的
 * 二进制组合一定能表示(0——s)的所有数;
 *
 * 假设s用二进制表示的组合是:1,2,4,8,...,2^k,t;(t>=0 && t<2(k+1))
 * (即 s = 1+2+4+8+...+2^k+t ),其中2^k表示的是
 * s用二进制表示的最后一个,也是最大的一个完整的二次方幂;
 * 那么有 2^(k+1)-1 <= s && 2^(k+2)-1 > s 一定成立;
 *
 * 因此可得分解s的过程如下:
 *  int k=1;
    while(k<=s)
    {
        ++idx;
        w[idx] = k*a;
        c[idx] = k*b;
        s-=k;
        k*=2;
    }
    if(s > 0)
    {
        ++idx;
        w[idx] = s*a;
        c[idx] = s*b;
    }
    
    因此分解完所有的物品以后,就可以看作是 01背包来解决;

/**
 * 状态设计:dp[i][j]:从前i种物品中选择不超过容量j的集合中价值最大的
 * 方案;
 * 状态计算:dp[i][j] = { dp[i-1][j-k*w[i]] + k*c[i] };
 * 
 * 每种物品有s件,每种物品选择k件,难道k真的需要从 0 枚举到 s 吗?
 * 其实并不需要,我们可以用二进制来优化;
 * 因为32位的二进制位可以表示的数是(0 —— 2^32 -1),那么我们用合适的
 * 二进制组合一定能表示(0——s)的所有数;
 * 
 * 假设s用二进制表示的组合是:1,2,4,8,...,2^k,t;(t>=0 && t<2(k+1))
 * (即 s = 1+2+4+8+...+2^k+t ),其中2^k表示的是
 * s用二进制表示的最后一个,也是最大的一个完整的二次方幂;
 * 那么有 2^(k+1)-1 <= s && 2^(k+2)-1 > s 一定成立;
 * 
 * 因此可得分解s的过程如下:
 *  int k=1;
    while(k<=s)
    {
        ++idx;
        w[idx] = k*a;
        c[idx] = k*b;
        s-=k;
        k*=2;
    }
    if(s > 0)
    {
        ++idx;
        w[idx] = s*a;
        c[idx] = s*b;
    }
    
    因此分解完所有的物品以后,就可以看作是 01背包来解决;
*/
    
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 25000,M = 2100;
int w[N],c[N];  //N=2000*log(2000) 
int dp[M];

int main()
{
    int n,v;
    cin >> n >> v;
    
    int idx=0;
    for(int i=1;i<=n;++i)
    {
        int a,b,s;
        cin >> a >> b >> s;
        
        int k=1;
        while(k<=s)
        {
            ++idx;
            w[idx] = k*a;
            c[idx] = k*b;
            s-=k;
            k*=2;
        }
        if(s > 0)
        {
            ++idx;
            w[idx] = s*a;
            c[idx] = s*b;
        }
    }
    n = idx;
    
    for(int i=1;i<=n;++i)
        for(int j=v;j>=w[i];--j)
            dp[j] = max(dp[j] , dp[j-w[i]]+c[i]);
            
    cout << dp[v] << endl;
    return 0;
}

9. 分组背包问题

有 N

组物品和一个容量是 V

的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij

,价值是 wij,其中 i 是组号,j

是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V

,用空格隔开,分别表示物品组数和背包容量。

接下来有 N

组数据:

  • 每组数据第一行有一个整数 Si

,表示第 i

  • 个物品组的物品数量;
  • 每组数据接下来有 Si
  • 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j
    • 个物品的体积和价值;

    输出格式

    输出一个整数,表示最大价值。

    数据范围

    0<N,V≤100


    0<Si≤100
    0<vij,wij≤100

    输入样例

    3 5
    2
    1 2
    2 4
    1
    3 4
    1
    4 5
    

    输出样例:

    8
    

/**
 * dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i][k]]+c[i][k]);
*/

// 二维数组进行状态设计

/**
 * dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i][k]]+c[i][k]);
*/

// 二维数组进行状态设计
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 110;
int s[maxn],w[maxn][maxn],c[maxn][maxn];
int dp[maxn][maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
    {
        cin >> s[i];
        for(int j=1;j<=s[i];++j)
            cin >> w[i][j] >> c[i][j];
    }
    
    for(int i=1;i<=n;++i)
        for(int j=0;j<=v;++j)
        {
            dp[i][j] = dp[i-1][j];  //不选第i种
            for(int k=1;k<=s[i];++k)
            {
                if(j>=w[i][k])  //选择第i种的第k号编号
                    dp[i][j] = max(dp[i][j],dp[i-1][j-w[i][k]]+c[i][k]);
            }
        }

    cout << dp[n][v] << endl;
    return 0;
}

 

/**
 * dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i][k]]+c[i][k]);
*/

// 一维数组(滚动数组)进行状态设计

/**
 * dp[i][j] = max(dp[i-1][j] , dp[i-1][j-w[i][k]]+c[i][k]);
*/

// 一维数组(滚动数组)进行状态设计
#include <iostream>
#include <algorithm>

using namespace std;

const int maxn = 110;
int s[maxn],w[maxn][maxn],c[maxn][maxn];
int dp[maxn];

int main()
{
    int n,v;
    cin >> n >> v;
    
    for(int i=1;i<=n;++i)
    {
        cin >> s[i];
        for(int j=1;j<=s[i];++j)
            cin >> w[i][j] >> c[i][j];
    }
    
    for(int i=1;i<=n;++i)
        for(int j=v;j>=0;--j)
        {
            dp[j] = dp[j];  //不选第i种
            for(int k=1;k<=s[i];++k)
            {
                if(j>=w[i][k])  //选择第i种的第k号编号
                    dp[j] = max(dp[j],dp[j-w[i][k]]+c[i][k]);
            }
        }

    cout << dp[v] << endl;
    return 0;
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值