引言:我有GPU,之前也下载了cuda,但是在jupyter中不能使用gpu,原因是我下载的cuda在另一个虚拟环境pytorch中,但是pytorch这个虚拟环境没有加到jupyter的内核中,怎么在jupyter使用自己创建的虚拟环境,看:二.anaconda环境下在jupyter使用自己创建的虚拟环境。
一.使用和管理虚拟环境
首先运行Anaconda Prompt:
1.检验当前conda的版本
conda -V
2.创建虚拟环境:
conda create -n env_name python=x.x
#同时可以安装指定库
conda create -n env_name numpy matplotlib python=3.6
env_name 为虚拟环境名称,x.x为虚拟环境python的版本,根据需求来定。
3.激活虚拟环境
conda activate env_name
4.退出虚拟环境
conda deactivate env_name
5.查看已有的虚拟环境
conda env list 或 conda info -e
6.anaconda从其他环境切换到base环境:
activate root
传送门:Anaconda创建虚拟环境并使用Jupyter-notebook打开虚拟环境(开搞开搞)_anaconda创建环境之后jupyter notebook-CSDN博客
二.anaconda环境下在jupyter使用自己创建的虚拟环境
传送门:win10 anaconda环境下在jupyter使用自己创建的虚拟环境-CSDN博客
三.怎么删除jupyter其他内核?
- 查看 Jupyter notebook kernel
jupyter kernelspec list
- 删除 jupyter 内核
jupyter kernelspec remove kernelname
传送门:怎么删除jupyter其他内核? - Python基础教程
四、怎么在Pycharm中使用自己在anaconda下创建的虚拟环境:例如pytorch
首先随便打开一个项目,在文件选项下选择设置,然后按照图片进行操作:
1.文件下的设置:
2.点击python解释器
3.点击全部显示
4.点击加号,添加python解释器
5.选择添加你创建的虚拟环境下的python.exe的路径
6.之后创建新项目就可以选择之前添加好的python解释器: