动手学强化学习-策略梯度&&DQN变种

  1. Double DQN的意义:为了解决神经网络对Q值估计过高的问题,将优化的TD误差目标选取action的那一项更新为:

Double DQN的更新目标
DQN和Double DQN不同的优化目标
2. Q值被过高估计的原因:

Q值被过高估计的实际例子
3. 为什么 Dueling DQN 会比 DQN 好?

  • 部分原因在于 Dueling DQN 能更高效学习状态价值函数。每一次更新时,函数都会被更新,这也会影响到其他动作的值。而传统的 DQN 只会更新某个动作的值,其他动作的值就不会更新。因此,Dueling DQN 能够更加频繁、准确地学习状态价值函数。
  1. Dueling DQN 能够很好地学习到不同动作的差异性,在动作空间较大的环境下非常有效

  2. class PolicyNet(torch.nn.Module):
        def __init__(self, state_dim, hidden_dim, action_dim):
            super(PolicyNet, self).__init__()
            self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
            self.fc2 = torch.nn.Linear(hidden_dim, action_dim)
    
        def forward(self, x):
            x = F.relu(self.fc1(x))
            # 这里采用在离散动作空间上的softmax()函数来实现一个可学习的多项分布(multinomial distribution)
            return F.softmax(self.fc2(x), dim=1)
    
    class REINFORCE:
        def __init__(self, state_dim, hidden_dim, action_dim, learning_rate, gamma,
                     device):
            self.policy_net = PolicyNet(state_dim, hidden_dim,
                                        action_dim).to(device)
            self.optimizer = torch.optim.Adam(self.policy_net.parameters(),
                                              lr=learning_rate)  # 使用Adam优化器
            self.gamma = gamma  # 折扣因子
            self.device = device
    
        def take_action(self, state):  # 根据动作概率分布随机采样
            state = torch.tensor([state], dtype=torch.float).to(self.device)
            probs = self.policy_net(state)
            # 创建一个动作概率分布 
            action_dist = torch.distributions.Categorical(probs)
            # 采样动作,action的数据类型就是一个动作序号
            action = action_dist.sample()
            # 之所以要吊用item函数就是为了从这个单元素张量中提取出Python的标准数据类型的值
            return action.item()
    
        def update(self, transition_dict):
            reward_list = transition_dict['rewards']
            state_list = transition_dict['states']
            action_list = transition_dict['actions']
    
            G = 0
            self.optimizer.zero_grad()
            # 经典反向计算预期回报
            for i in reversed(range(len(reward_list))):  # 从最后一步算起
                reward = reward_list[i]
                state = torch.tensor([state_list[i]],
                                     dtype=torch.float).to(self.device)
                action = torch.tensor([action_list[i]]).view(-1, 1).to(self.device)
                log_prob = torch.log(self.policy_net(state).gather(1, action))
                G = self.gamma * G + reward
                loss = -log_prob * G  # 每一步的损失函数
                loss.backward()  # 反向传播计算梯度
            self.optimizer.step()  # 梯度下降
    
  3. Policy_Gradient是一个on-policy算法,之前收集到的轨迹数据不会被再次利用。相比于之前的值函数算法,会使用更多的序列进行训练。

    • 主要的不足之处:性能也有一定程度的波动,这主要是因为每条采样轨迹的回报值波动比较大
  4. REINFORCE 算法是策略梯度乃至强化学习的典型代表,智能体根据当前策略直接和环境交互,通过采样得到的轨迹数据直接计算出策略参数的梯度,进而更新当前策略,使其向最大化策略期望回报的目标靠近。

  5. 策略梯度这种学习方式是典型的从交互中学习,并且其优化的目标(即策略期望回报)正是最终所使用策略的性能,这比基于价值的强化学习算法的优化目标(一般是时序差分误差的最小化)要更加直接。 REINFORCE 算法理论上是能保证局部最优的,它实际上是借助蒙特卡洛方法采样轨迹来估计动作价值,这种做法的一大优点是可以得到无偏的梯度。但是,正是因为使用了蒙特卡洛方法,REINFORCE 算法的梯度估计的方差很大可能会造成一定程度上的不稳定

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值