基于python和opencv的人脸识别

该图像识别需要安装opencv,opencv的安装方法有两种,可通过网上提示的进行安装,本人是由pycharm里面直接安装的。 也可以直接根据python的版本通过cmd命令进行安装其命令为pip install opencv;

在这里如若直接拷贝本人的代码进行测试需要考虑到图片的路径和联级的路径,鄙人建议使用绝对路径。

import cv2


#基于图片的人脸识别
filename = 'F:/test/face1/yao7.png'

def detect(filename):
    #联级
    face_cascade = cv2.CascadeClassifier('F:/test/venv/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
   #取像
    img = cv2.imread(filename)
    #转灰度
    gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray,1.1,5)
    #人脸画框
    for(x,y,w,h) in faces :
        img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    #窗口名
    cv2.namedWindow("aiyst1")
    #显示
    cv2.imshow('aiyst',img)
    #保存
    cv2.imwrite("F:/test/face1/" + "yao" + ".jpg",img)
    #cv2.imwrite('F:/test/face1',img)
    cv2.waitKey(0)


#基于视频(摄像头取像)的图像识别
def detect2():
    # 联级(脸和眼睛)
    face1_cascade = cv2.CascadeClassifier('F:/test/venv/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml')
    eye_cascade = cv2.CascadeClassifier('F:/test/venv/Lib/site-packages/cv2/data/haarcascade_eye.xml')
    #打开摄像头
    camera = cv2.VideoCapture(0)
    while(True):
        #读取摄像头图像
        ret,frame = camera.read()
        #转灰度图
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = face1_cascade.detectMultiScale(gray, 1.3, 5)
        for (x, y, w, h) in faces:
            img = cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
            roi_gray = gray[y:y+h, x:x+w]
            eyes = eye_cascade.detectMultiScale(gray, 1.3, 5, 0, (40,40))
            for(ex,ey,ew,eh) in eyes :
                cv2.rectangle(img, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
         #显示图像
        cv2.imshow("camera",frame)
        #按q键关闭显示图像
        if cv2.waitKey(1) & 0xff == ord("q"):
            break
    #关闭摄像头
    camera.release()
    cv2.destroyAllWindows()
if __name__ =="__main__":
    #调用函数
    detect2()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿垚啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值