- 博客(2)
- 收藏
- 关注
原创 transformer论文理解(从self-attention开始)
2.decoder中的Masked Multi-Head Attention的q、k、v均来自上一个decoderlayer的输出,但进行了mask操作,将当前位置之后的向量的v设为负无穷,屏蔽掉当前位置之后的影响,使得输出只依赖于当前输入与此位置之前的信息。3.decoder中的Multi-Head Attention的k、v来自encoder的输出,而q来自Masked Multi-Head Attention的输出,这使得decoder的每个位置都可以关注到输入序列的全部信息。
2023-04-03 21:16:10 218 1
原创 CRNN模型理解及代码修改
特征序列中每个特征向量对应特征图的每一列,而特征图每一列又对应原始图像的一块矩形区域,由此可得图2,即每个特征向量对应一块矩形区域。直接计算原始图像与标签之间损耗。3.image = torch.FloatTensor(opt.batchSize, 3, opt.imgH, opt.imgH)后一个opt.imgH修改为opt.imgW(这种错误都有,麻了呀)基于词典D,从词典中选择最有可能的序列,为了解决时耗问题,可采取无词典与有词典相结合的方式,先依据无词典方式找到几个与真实序列很相近的候选序列,
2023-03-27 20:10:17 943 9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人