一、社交距离Ⅰ
原题链接:https://www.acwing.com/problem/content/1661/
一种新型疾病,COWVID-19,开始在全世界的奶牛之间传播。
Farmer John 正在采取尽可能多的预防措施来防止他的牛群被感染。
Farmer John 的牛棚是一个狭长的建筑物,有一排共 N 个牛栏。
有些牛栏里目前有奶牛,有些目前空着。得知“社交距离”的重要性,Farmer John 希望使得 D 尽可能大,其中 D 为最近的两个有奶牛的牛栏的距离。
例如,如果牛栏 3 和 8 是最近的有奶牛的牛栏,那么 D=5。
最近两头奶牛新来到 Farmer John 的牛群,他需要决定将她们分配到哪两个之前空着的牛栏。
请求出他如何放置这两头新来的奶牛,使得 D 仍然尽可能大。
Farmer John 不能移动任何已有的奶牛;他只想要给新来的奶牛分配牛栏。
输入格式
输入的第一行包含 N。
下一行包含一个长为 N 的字符串,由 0 和 1 组成,描述牛棚里的牛栏。
0 表示空着的牛栏,1 表示有奶牛的牛栏。
字符串中包含至少两个 0,所以有足够的空间安置两头新来的奶牛。
输出格式
输出 Farmer John 以最优方案在加入两头新来的奶牛后可以达到的最大 D 值(最近的有奶牛的牛栏之间的距离)。
数据范围
2≤N≤105
输入样例:
14 10001001000010
输出样例:
2
样例解释
在这个例子中,Farmer John可以以这样的方式加入奶牛,使得牛栏分配变为 10x010010x0010,其中 x 表示新来的奶牛。此时 D=2。不可能在加入奶牛之后取到更大的 D 值。
解题思路:
这个题可以直接二分,直接找答案,这也是最常见的一种方式,本题二分时间复杂度为O(nlogn)但是这个题可以以线性的时间复杂度O(n)过,下面说一下这种方法的思路:
首先根据题意可以分两种情况
①两头牛在同一个区间
②两头牛不在同一个区间
社交距离Ⅰ代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int n,m;//m为牛的个数
int p[N];//记录牛的位置
char s[N];
int main()
{
scanf("%d%s", &n, s+1);
for (int i = 1; i <= n; i ++ )
{
if(s[i]=='1')
{
p[++m]=i;
}
}
if(!m) printf("%d\n",n-1);//如果没有牛则放在位置 1 和位置 n,此时 D 最大为 n-1
else
{
int xmin=N;//所有区间最小值
for (int i = 1; i < m; i ++ )
{
xmin = min(xmin,p[i+1]-p[i]);
}
//第一种情况:两头牛在同一个区间
int y=max((p[1]-1)/2,(n-p[m])/2);//图示①和②
//如果牛放中间最大的D
for (int i = 1; i < m; i ++ )
{
y=max(y,(p[i+1]-p[i])/3);
}
//第二种情况:两头牛不在同一个区间
int y1=p[1]-1,y2=n-p[m];//y1记录最大值,y2记录最小值
if(y1<y2) swap(y1,y2);
for (int i = 1; i < m; i ++ )
{
int d=(p[i+1]-p[i])/2;//如果牛放中间最大的D
if(d>y1) y2=y1,y1=d;
else if(d>y2) y2=d;
}
printf("%d\n",min(xmin,max(y2,y)));
}
return 0;
}