PTA 7 士兵排队问题 分治算法思想

这是一篇关于编程算法的解析,主要讨论如何在二维坐标系中,让散乱分布的士兵通过最少的移动步数排列成水平队列。问题转化为寻找坐标中位数以最小化移动距离,类似一维的输油管道问题。通过排序和中位数计算,得出最少移动步数的解决方案,并提供了C语言实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个划分成网格的操场上,n个士兵散乱地站在网格点上。网格点用整数坐标(x,y)表示。士兵们可以沿网格边往上、下、左、右移动一步,但在同一时刻任一网格点上只能有一名士兵。按照军官的命令,士兵们要整齐地列成一个水平队列,即排列成(x,y),(x+1,y),…,(x+n-1,y)。如何选择x和y的值才能使士兵们以最少的总移动步数排成一行。

编程计算使所有士兵排成一行需要的最少移动步数。

题目引自POJ

输入格式:

第1行是士兵数n,1≤n≤10000。接下来n行是士兵的初始位置,每行有2个整数x和y,-10000≤x,y≤10000。

输出格式:

一个数据,即士兵排成一行需要的最少移动步数。

输入样例:

5
1  2
2  2
1  3
3  -2
3  3

结尾无空行

输出样例:

8

这道题很多人那道题可能一头雾水,自己C语言、java语言等语法学得还不错,但是这题却无从下手,不知道怎么开始写。与其说这道答题是编程题,还不如说是数学计算题。做过输油管道问题得同学可能有点思路,但是现在是二维坐标,不再是一维坐标了,多了一维,那么问题就要变得复杂了。现在看分析:

Y轴上:(假设现在有n个士兵)

可以把所有士兵得y坐标看成一个输油管道问题,即找一个坐标Y_mid,使得所有y坐标道该坐标的距离之和最小。显然sum1 = |y0-Y_mid| + |y1-Y_mid| + |y2-Y_mid|....|yn-1-Y_mid|。  经过证明Y_mid就是y坐标的中位数,注意中位数,不是数学意义上的中位数,是将n个数按序排序,第n/2大的数,即a[n/2]。

X轴上。这里就有点难以分析了。假设现在排序后的x坐标为x0,x1,x2,x3.....xn-1,而最终士兵站好的坐标为x'0,x'1,x'2.....x'n-1。那么需要移动的步数就是sum2 = |x0-x'0| + |x1-x'1| + |x2-x'2|....+| xn-1-x'n-1|。  而我们直到士兵排好序后是连续的,所以上面公式可以写成这样,sum2 = |x0-x'0| + |x1-(x'0+1)| + |x2-(x'0+2)|....+| xn-1-(x'0+n-1)|。  现在就和那个输油管道问题是一样的了。但是现在这个公式还不够直观,现在我们把公式再进行转化 sum2 = |x0-x'0| + |(x1-1)-x'0)| + |(x2-2)-x'0|....+| (xn-1-(n-1))-x'0)|。  很显然这个x'0就是数组x坐标的中位数。

则最小移动步数为 sum1+sum2。

代码如下:

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define Max 10000
int Compare(const void* e1, const void* e2)//定义函数比较
{
	return (int)*((int*)e1) - (int)*((int*)e2);
}

int add(int a[], int n,int mid)
{
	int sum = 0;
	for (int i = 0; i < n; i++)
	{
		sum += abs(a[i]-mid);
	}
	return sum;
}

int main()
{
	int x[Max] = { 0 }, y[Max] = { 0 };
	int n = 0;
	scanf("%d", &n);
	int i = 0;
	for (i = 0; i < n; i++)
	{
		scanf("%d%d", &x[i], &y[i]);
	}
	qsort(x, n, sizeof(x[0]), Compare);
	qsort(y, n, sizeof(y[0]), Compare);
	for (i = 0; i < n; i++)//这是x轴上的坐标移动的最终位置,是根据公式求得的
	{
		x[i] = x[i] - i;
	}
	qsort(x, n, sizeof(x[0]), Compare);
	int Y_mid = y[n / 2], X_mid = x[n / 2];
	int y_sum = 0, x_sum = 0;
	y_sum = add(y, n, Y_mid);	
	x_sum = add(x, n, X_mid);
	printf("%d\n", x_sum + y_sum);
	return 0;
}

运行结果:

提交情况:

 

 

### PTA 平台上的 KMP 算法问题解析 #### 什么是KMP算法? KMP算法的核心思想是在模式串与目标串不匹配的情况下,通过预先处理模式串来获取一个`next`数组。此数组记录了部分匹配的信息,使得当遇到失配情况时可以快速跳转到下一个可能的匹配位置而不必回溯目标串指针,从而提高效率[^1]。 #### 如何实现KMP算法中的Next数组构建? 为了计算给定模式串T的`next`数组,在PTA平台上通常会定义如下形式的方法: ```c++ void get_nextval(char T[], int next[]); ``` 这里,T代表待求解的模式串,next则是用来存储对应于每一个字符的最大相等前后缀长度减一的结果集。具体来说就是对于任意i(0<i<T.length()),如果存在j满足条件S[0...j-1]=S[i-j...i-1],那么我们就说第i位之前的子串具有长度为j的最大相同前缀后缀;此时应设置next[i]=j-1。否则设next[i]=-1表示无这样的重复序列[^2]。 #### 实现完整的KMP搜索功能 同样地,在PTA上也会提供这样一个用于执行实际字符串匹配过程的功能接口: ```c++ int Index_KMP(char S[], char T[], int pos, int next[]); ``` 其中参数说明:S为目标字符串;T为模板字符串;pos指示从哪个索引处开始尝试寻找第一个出现的位置;而最后一个参数next[]即为我们之前提到过的那个辅助性的跳跃表。返回值是一个整数型变量,它代表着所找到的第一个完全吻合项起始地址相对于整个源文本开头偏移量加1后的数值(-1意味着未发现任何符合条件的对象)。 下面给出一段基于上述两个函数完成简单版本KMP查找逻辑的C++示范代码片段: ```cpp #include <iostream> using namespace std; // 计算并填充next数组 void get_nextval(const string& pattern, vector<int>& next){ int j = -1; next[0] = j; for(int i=1;i<pattern.size();){ if(j==-1 || pattern[j]==pattern[i-1]){ ++j;++i; if(pattern[j]!=pattern[i-1]) next[i-1]=j; else next[i-1]=next[j]; } else{ j=next[j]; } } } // 使用KMP算法进行字符串匹配 int index_kmp(const string& text,const string& pattern,vector<int> &next,int start_pos=0){ int m=text.size(),n=pattern.size(); int i=start_pos,j=0; while(i<m && j<n){ if(j==-1||text[i]==pattern[j]){ i++;j++; } else{ j=next[j]; } } if(j>=n) return (i-n); else return (-1); } ``` 这段程序首先调用了`get_nextval()`方法初始化好了一个针对特定模式串优化好的转移规则列表——也就是所谓的“next”数组之后再借助后者实现了高效的线性时间复杂度内的精确检索操作 `index_kmp()`.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值