差分矩阵

差分矩阵

本 文 参 考 并 借 鉴 自 “ 昂 昂 累 世 士 ” 的 “ A c W i n g 798 差 分 矩 阵 ” \color{blue}{本文参考并借鉴自“昂昂累世士”的“AcWing 798 差分矩阵”} AcWing798
原作者链接昂昂累世士

题干

输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2)

表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上 c

请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数 n,m,q

接下来 n行,每行包含 m个整数,表示整数矩阵。

接下来 q行,每行包含 5 个整数 x1, y1, x2, y2, c,表示一个操作。

输出格式

共 n行,每行 m个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1≤n,m≤1000

1≤q≤100000

1≤x1≤x2≤n

1≤y1≤y2≤m

−1000≤c≤1000

−1000≤矩阵内元素的值≤1000

输入样例:

3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1

输出样例:

2 3 4 1
4 3 4 1
2 2 2 2

差分矩阵:给定数组a[N], b[N],其中满足a[5] = b[1] +...+ b[5](数组下标从1开始),那么我们称a数组为b数组的前缀和,称b数组为a数组的差分。

差分是前缀和的逆运算,所以已知前缀和的公式:
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
我们可以推导出差分的公式:
b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];
下面我们分析数组b的变化本质(如下图)

此时在图中,b[i][j]
在这里插入图片描述b[i][j]的值就是以a[i][j]为右下角作2*2的矩阵,其中主对角线上的两元素之和与副对角线上的元素之和做差,所以不难想象如果令这四个值均加上相同的值C,那么b[i][j]并不会发生改变,要使元素b[i][j]发生改变,必须要让不同对角线上有不同个数的元素加上C

所以如果令全体黑色矩形加上C,只有上图的红色正方形的右下角元素会发生改变,即受影响的点为:b数组受影响的只有四个点,分别是b[x1][y1] ,b[x2 + 1][y1],b[x1][y2 + 1] , b[x2 + 1][y2 + 1]

再根据求b[]数组的公式:b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]
得知变化为:

b[x2 + 1][y2 + 1] += c;
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;

代码入下:

#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
int n, m, q;
int main()
{
    cin >> n >> m >> q;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        {
            scanf("%d", &a[i][j]);
            b[i][j] = a[i][j] + a[i - 1][j - 1] - a[i - 1][j] - a[i][j - 1];
        }
    while(q--)
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        b[x1][y1] += c;
        b[x2 + 1][y1] -= c;
        b[x1][y2 + 1] -= c;
        b[x2 + 1][y2 + 1] += c;
    }
    for(int i = 1; i <= n; i++)
    {
        for(int j = 1; j <= m; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
            cout << a[i][j] << " ";}
        cout << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值