差分矩阵
本
文
参
考
并
借
鉴
自
“
昂
昂
累
世
士
”
的
“
A
c
W
i
n
g
798
差
分
矩
阵
”
\color{blue}{本文参考并借鉴自“昂昂累世士”的“AcWing 798 差分矩阵”}
本文参考并借鉴自“昂昂累世士”的“AcWing798差分矩阵”
原作者链接:昂昂累世士
题干:
输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2)
表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上 c
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数 n,m,q
接下来 n行,每行包含 m个整数,表示整数矩阵。
接下来 q行,每行包含 5 个整数 x1, y1, x2, y2, c,表示一个操作。
输出格式
共 n行,每行 m个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1≤n,m≤1000
1≤q≤100000
1≤x1≤x2≤n
1≤y1≤y2≤m
−1000≤c≤1000
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
差分矩阵:给定数组a[N], b[N]
,其中满足a[5] = b[1] +...+ b[5]
(数组下标从1开始),那么我们称a
数组为b
数组的前缀和,称b
数组为a
数组的差分。
差分是前缀和的逆运算,所以已知前缀和的公式:
a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
我们可以推导出差分的公式:
b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];
下面我们分析数组b的变化本质(如下图)
此时在图中,b[i][j]
b[i][j]
的值就是以a[i][j]
为右下角作2*2的矩阵,其中主对角线上的两元素之和与副对角线上的元素之和做差,所以不难想象如果令这四个值均加上相同的值C,那么b[i][j]
并不会发生改变,要使元素b[i][j]
发生改变,必须要让不同对角线上有不同个数的元素加上C
所以如果令全体黑色矩形加上C,只有上图的红色正方形的右下角元素会发生改变,即受影响的点为:b数组受影响的只有四个点,分别是b[x1][y1] ,b[x2 + 1][y1],b[x1][y2 + 1] , b[x2 + 1][y2 + 1]
再根据求b[]
数组的公式:b[i][j] = a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1]
得知变化为:
b[x2 + 1][y2 + 1] += c;
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
代码入下:
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N][N], b[N][N];
int n, m, q;
int main()
{
cin >> n >> m >> q;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
scanf("%d", &a[i][j]);
b[i][j] = a[i][j] + a[i - 1][j - 1] - a[i - 1][j] - a[i][j - 1];
}
while(q--)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
b[x1][y1] += c;
b[x2 + 1][y1] -= c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y2 + 1] += c;
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++) { a[i][j] = a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1] + b[i][j];
cout << a[i][j] << " ";}
cout << endl;
}
}