1.题目
2.思路
1正向模拟
1.首先我们观察数组内都不是负数,所以字段和是有序的,删除某个位置的时候找出该位置两边的l和r就好,开一个set存删除的下标,一个multiset存子字段和
2. 每次找出当前删除pos的最小上界r和最大下界l,去multiset中删去[l+1,r-1]的值,然后把[l+1,pos-1]和[pos+1,r-1]加入到其中,因为multiset的增删都是logn的,所以是可以的
2反向并查集合并
因为修改数组的长度与原数组长度是相同的,所以我们可以逆着去推,区间合并比分割区间简单点,这里子段是连续的,所以可以考虑不断合并,这里采用并查集,数组中有负值的时候应该使用线段树。
3.代码
1 模拟
typedef long long ll;
#define pb push_back
class Solution {
public:
vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
int n=nums.size();
set<int> st;
multiset<ll> ms;
vector<ll> f(n+1,0),ans;
for(int i=1;i<=n;i++){
f[i]=f[i-1]+nums[i-1];
}
st.insert(0),st.insert(n+1);
//边界情况:删除第一个和最后一个的时候
//两边统一处理
ms.insert(f[n]);
for(int pos:removeQueries){
pos++;//0~n-1--->1~n;
auto it=st.upper_bound(pos);
int l=*prev(it),r=*it;
st.insert(pos);
ms.erase(ms.find(f[r-1]-f[l]));
if(pos-1>l) ms.insert(f[pos-1]-f[l]);
if(pos+1<r) ms.insert(f[r-1]-f[pos]);
ll t;
if(ms.empty()) t=0;
else
t=*prev(ms.end());
ans.pb(t);
}
return ans;
}
};
2.反向并差集
class Solution {
public:
vector<int> fa;
vector<long long> a;
int find(int x){
if(fa[x] == x) return x;
return fa[x] = find(fa[x]);
}
void merge(int x, int y){
int aa = find(x);
int bb = find(y);
if(aa != bb){
fa[bb] = aa;
a[aa] += a[bb];
}
}
vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
int n = nums.size();
a.resize(n, 0);
for(int i=0;i<n;i++) fa.push_back(i);
vector<long long> res;
priority_queue<long long> q;
vector<bool> vis(n);
for(int i=n-1;i>=0;i--){
int x = removeQueries[i];
if(x-1 >= 0 && vis[x-1]) merge(x, x-1);
if(x+1 < n && vis[x+1]) merge(x, x+1);
vis[x] = 1;
a[find(x)] += nums[x];
q.push(a[find(x)]);
res.push_back(q.top());
}
vector<long long> ans;
for(int i=n-2;i>=0;i--){
ans.push_back(res[i]);
}
ans.push_back(0);
return ans;
}
};