力扣6159. 删除操作后的最大子段和

1.题目

链接

2.思路

1正向模拟

1.首先我们观察数组内都不是负数,所以字段和是有序的,删除某个位置的时候找出该位置两边的l和r就好,开一个set存删除的下标,一个multiset存子字段和
2. 每次找出当前删除pos的最小上界r和最大下界l,去multiset中删去[l+1,r-1]的值,然后把[l+1,pos-1]和[pos+1,r-1]加入到其中,因为multiset的增删都是logn的,所以是可以的

2反向并查集合并

因为修改数组的长度与原数组长度是相同的,所以我们可以逆着去推,区间合并比分割区间简单点,这里子段是连续的,所以可以考虑不断合并,这里采用并查集,数组中有负值的时候应该使用线段树。

3.代码

1 模拟

typedef long long ll;
#define pb push_back
class Solution {
public:
    vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
        int n=nums.size();
        set<int> st;
        multiset<ll> ms;
        vector<ll> f(n+1,0),ans;
        for(int i=1;i<=n;i++){
            f[i]=f[i-1]+nums[i-1];
        }
        st.insert(0),st.insert(n+1);
        //边界情况:删除第一个和最后一个的时候
        //两边统一处理
        ms.insert(f[n]);
        for(int pos:removeQueries){
            pos++;//0~n-1--->1~n;
            auto it=st.upper_bound(pos);
            int l=*prev(it),r=*it;
            st.insert(pos);
            ms.erase(ms.find(f[r-1]-f[l]));
            if(pos-1>l) ms.insert(f[pos-1]-f[l]);
            if(pos+1<r) ms.insert(f[r-1]-f[pos]);
            ll t;
            if(ms.empty()) t=0;
            else
                t=*prev(ms.end());
            ans.pb(t);
        }
        return ans;
    }
};

2.反向并差集

class Solution {
public:
    vector<int> fa;
    vector<long long> a; 
    int find(int x){
        if(fa[x] == x) return x;
        return fa[x] = find(fa[x]);
    }
    void merge(int x, int y){
        int aa = find(x);
        int bb = find(y);
        if(aa != bb){
            fa[bb] = aa;
            a[aa] += a[bb];
        }
    }
    vector<long long> maximumSegmentSum(vector<int>& nums, vector<int>& removeQueries) {
        int n = nums.size();
        a.resize(n, 0);
        for(int i=0;i<n;i++) fa.push_back(i);
        vector<long long> res;
        priority_queue<long long> q;
        vector<bool> vis(n);
        for(int i=n-1;i>=0;i--){
            int x = removeQueries[i];
            if(x-1 >= 0 && vis[x-1]) merge(x, x-1);
            if(x+1 < n && vis[x+1]) merge(x, x+1);
            vis[x] = 1;
            a[find(x)] += nums[x];
            q.push(a[find(x)]);
            res.push_back(q.top());
        }
        vector<long long> ans;
        for(int i=n-2;i>=0;i--){
            ans.push_back(res[i]);
        }
        ans.push_back(0);
        return ans;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值