P1019 [NOIP2000 提高组

本文详细解析了NOIP2000提高组单词接龙问题的两种解题思路,通过DFS遍历寻找最长单词链,并提供完整代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P1019 [NOIP2000 提高组] 单词接龙

题目描述
单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如 beast 和 astonish,如果接成一条龙则变为 beastonish,另外相邻的两部分不能存在包含关系,例如 at 和 atide 间不能相连。

输入格式
输入的第一行为一个单独的整数 nn 表示单词数,以下 nn 行每行有一个单词,输入的最后一行为一个单个字符,表示“龙”开头的字母。你可以假定以此字母开头的“龙”一定存在。

输出格式
只需输出以此字母开头的最长的“龙”的长度。

解法1:

我们可以进去dfs遍历每一个可能
假设当前串是tt 而匹配接龙串是s[i]
我们可以这样判断是不是接头
tt.substr(j).compare(s[i].substr(0,tt.size()-j))
当然,我们要贪心一点,找最长的,所以我们需要纪录当前走到的最长的位置
下面是遍历语句

		int t=0;
		for(int j=0;j<tt.size();j++){
			if(tt[j]!=s[i][0]) continue;
			if(tt.substr(j).compare(s[i].substr(0,tt.size()-j))) >continue;
			t=max(t,j);
		}

代码

#include<iostream>
#include<cstring>
using namespace std;
const int N = 22;
int n;
string s[N];
int v[N];
int cnt;
void dfs(string tt){
	for(int i=0;i<n;i++){
		if(v[i]==2) continue;
		int t=0;
		for(int j=0;j<tt.size();j++){
			if(tt[j]!=s[i][0]) continue;
			if(tt.substr(j).compare(s[i].substr(0,tt.size()-j))) continue;
			t=max(t,j);
		}
		if(t==0||t==s[i].size()) continue;
		v[i]++;
		string sss = tt+s[i].substr(tt.size()-t);cnt=max(cnt,(int)sss.size());
//		cout<<sss<<"  "<<cnt<<endl;
		dfs(sss);
		v[i]--;
	}
	
}
int main(){
	char ss;
	scanf("%d",&n);
	for(int i=0;i<n;i++) cin>>s[i];
	cin>>ss;int ans = 0;
	for(int i=0;i<n;i++){
		if(s[i][0]==ss){
			memset(v,0,sizeof v);
			cnt=s[i].length();v[i]=1;
			dfs(s[i].substr(0));
			ans=max(ans,cnt);
		}
	}
	cout<<ans<<endl;
	return 0;
} 

解法2:

第二种解法跟第一种也类似,但是简洁一些,我们从末尾枚举每一个字串可能的位置,基于贪心dfs找出最长的字串,然后每次扩充长度
核心代码:

p.substr(j)==s[i].substr(0,p.size()-j) //接龙字串判断
&&(p.size()==1 ||(j&&(p.size()-j)!=s[i].length()))//是否是第一个配对串或者是否一个字串包含另一个
&&d[i]<2//用到两次没有

第二种比第一种跑的快一些

代码

#include<iostream>
using namespace std;
const int N = 22;
int n; 
string s[N];
int d[N];
int ans;
void dfs(string p){
	for(int i=0;i<n;i++){
		for(int j=p.size()-1;j>=0;j--){
			if(p.substr(j)==s[i].substr(0,p.size()-j)
			&&(p.size()==1||(j&&(p.size()-j)!=s[i].length()))
			&&d[i]<2){
				d[i]++;ans=max(
				(int)(p+s[i].substr(p.size()-j)).size(),ans
				);
				dfs(p+s[i].substr(p.size()-j));
				d[i]--;
			}
		}
	}
}
int main(){
	cin>>n;for(int i=0;i<n;i++) cin>>s[i];
	string p;cin>>p;
	dfs(p);
	cout<<ans<<endl;
	return 0;
}
### NOIP 2000 提高 单词接龙 P1019 解题思路 此问题的核心在于通过深度优先搜索 (DFS) 构造最长的“单词接龙”。以下是详细的解题分析: #### 题目解析 给定一单词以及一个起始字母,目标是从这些单词中构建一条尽可能长的“龙”,其中每个后续单词都必须以前一单词的结尾作为其开头的一部分。每个单词最多可被使用两次。 --- #### 数据结构设计 为了高效解决这个问题,我们需要以下几个数据结构: 1. **`g[n][n]` 数**:用于记录任意两个单词之间的重叠长度。具体来说,`g[i][j]` 表示第 `i` 个单词与第 `j` 个单词之间能够形成的重叠部分长度[^1]。 2. **`used[]` 数**:标记每个单词已经使用的次数,确保任何单词不会超过两次使用限制[^2]。 3. **全局变量 `res`**:保存当前找到的最大“龙”长度。 --- #### 算法流程 算法主要分为三个阶段: 1. **预处理阶段** 计算并填充 `g[][]` 数,计算两两单词间的最大公共前缀/后缀匹配长度。这可以通过简单的字符串比较完成[^3]。 2. **初始化阶段** 找到所有可能的起点单词(即以指定首字母开头的单词),并将它们逐一作为初始状态传入 DFS 进行探索。 3. **DFS 深度优先搜索** 使用递归的方式尝试扩展当前的“龙”。对于每一个未完全使用的合法单词,将其加入当前链条,并继续向下搜索。当无法进一步扩展时,更新全局最优解 `res` 并回溯。 --- #### 实现代码 下面是基于上述思路的一个 Python 实现版本: ```python from typing import List, Tuple def max_overlap(s1: str, s2: str) -> int: """计算s1和s2的最大重叠长度""" n = min(len(s1), len(s2)) for k in range(n, 0, -1): # 尝试从最大的k开始减少 if s1[-k:] == s2[:k]: return k return 0 def solve(words: List[str], start_char: str) -> int: n = len(words) g = [[max_overlap(words[i], words[j]) for j in range(n)] for i in range(n)] used = [0] * n # 初始化使用计数器 res = [0] # 存储最终结果 def dfs(last_word_idx: int, current_length: int): nonlocal res res[0] = max(res[0], current_length) for next_word_idx in range(n): overlap_len = g[last_word_idx][next_word_idx] if overlap_len > 0 and used[next_word_idx] < 2: used[next_word_idx] += 1 dfs(next_word_idx, current_length + len(words[next_word_idx]) - overlap_len) used[next_word_idx] -= 1 # 寻找所有符合条件的起点 starts = [i for i in range(n) if words[i][0] == start_char] for idx in starts: used[idx] += 1 dfs(idx, len(words[idx])) used[idx] -= 1 return res[0] # 输入样例 if __name__ == "__main__": n = int(input()) words = [] for _ in range(n): word = input().strip() words.append(word) start_char = input().strip() result = solve(words, start_char) print(result) ``` --- #### 复杂度分析 - **时间复杂度**: 主要由两部分构成——预处理阶段的时间复杂度为 \(O(N^2 \cdot L)\),其中 \(N\) 是单词数量,\(L\) 是平均单词长度;而 DFS 的最坏情况会达到指数级增长,但由于剪枝操作实际运行效率较高。 - **空间复杂度**: 主要是存储 `g[][]` 和辅助栈的空间需求,总体约为 \(O(N^2)\)[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值