P1019 [NOIP2000 提高组] 单词接龙
题目描述
单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如 beast 和 astonish,如果接成一条龙则变为 beastonish,另外相邻的两部分不能存在包含关系,例如 at 和 atide 间不能相连。
输入格式
输入的第一行为一个单独的整数 nn 表示单词数,以下 nn 行每行有一个单词,输入的最后一行为一个单个字符,表示“龙”开头的字母。你可以假定以此字母开头的“龙”一定存在。
输出格式
只需输出以此字母开头的最长的“龙”的长度。
解法1:
我们可以进去dfs遍历每一个可能
假设当前串是tt
而匹配接龙串是s[i]
我们可以这样判断是不是接头
tt.substr(j).compare(s[i].substr(0,tt.size()-j))
当然,我们要贪心一点,找最长的,所以我们需要纪录当前走到的最长的位置
下面是遍历语句int t=0; for(int j=0;j<tt.size();j++){ if(tt[j]!=s[i][0]) continue; if(tt.substr(j).compare(s[i].substr(0,tt.size()-j))) >continue; t=max(t,j); }
代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 22;
int n;
string s[N];
int v[N];
int cnt;
void dfs(string tt){
for(int i=0;i<n;i++){
if(v[i]==2) continue;
int t=0;
for(int j=0;j<tt.size();j++){
if(tt[j]!=s[i][0]) continue;
if(tt.substr(j).compare(s[i].substr(0,tt.size()-j))) continue;
t=max(t,j);
}
if(t==0||t==s[i].size()) continue;
v[i]++;
string sss = tt+s[i].substr(tt.size()-t);cnt=max(cnt,(int)sss.size());
// cout<<sss<<" "<<cnt<<endl;
dfs(sss);
v[i]--;
}
}
int main(){
char ss;
scanf("%d",&n);
for(int i=0;i<n;i++) cin>>s[i];
cin>>ss;int ans = 0;
for(int i=0;i<n;i++){
if(s[i][0]==ss){
memset(v,0,sizeof v);
cnt=s[i].length();v[i]=1;
dfs(s[i].substr(0));
ans=max(ans,cnt);
}
}
cout<<ans<<endl;
return 0;
}
解法2:
第二种解法跟第一种也类似,但是简洁一些,我们从末尾枚举每一个字串可能的位置,基于
贪心
和dfs
找出最长的字串,然后每次扩充长度
核心代码:p.substr(j)==s[i].substr(0,p.size()-j) //接龙字串判断 &&(p.size()==1 ||(j&&(p.size()-j)!=s[i].length()))//是否是第一个配对串或者是否一个字串包含另一个 &&d[i]<2//用到两次没有
第二种比第一种跑的快一些
代码
#include<iostream>
using namespace std;
const int N = 22;
int n;
string s[N];
int d[N];
int ans;
void dfs(string p){
for(int i=0;i<n;i++){
for(int j=p.size()-1;j>=0;j--){
if(p.substr(j)==s[i].substr(0,p.size()-j)
&&(p.size()==1||(j&&(p.size()-j)!=s[i].length()))
&&d[i]<2){
d[i]++;ans=max(
(int)(p+s[i].substr(p.size()-j)).size(),ans
);
dfs(p+s[i].substr(p.size()-j));
d[i]--;
}
}
}
}
int main(){
cin>>n;for(int i=0;i<n;i++) cin>>s[i];
string p;cin>>p;
dfs(p);
cout<<ans<<endl;
return 0;
}