最长上升子序列 优化 + 运用

最长上升子序列

是求一个序列中它的所有子序列中最长的那一个上升子序列
子序列指的是一个序列任意删除k个元素所组成的序列

常规DP o ( n 2 ) o(n^2) o(n2)

状态表示: f [ i ] f[i] f[i] 表示以第 i i i个结尾的最大的上升子序列
集合划分: f [ i ] = { m a x ( f [ k ] + 1 ) ∣ k ∈ [ 1 , i − 1 ] , f [ k ] ≤ f [ i ] } f[i] = \{ max(f[k] + 1) | k \in [1, i -1] , f[k] \leq f[i] \} f[i]={max(f[k]+1)k[1,i1],f[k]f[i]}

代码:
#include <bits/stdc++.h>
const int N = 1111;
using namespace std;
int n, ans, g[N], f[N];
int main() {
    cin >> n;
    for (int i = 1; i <= n; ++ i)
        cin >> g[i];
    for (int i = 1; i <= n; ++ i) f[i] = 1;
    for (int i = 1; i <= n; ++ i) {
        for (int j = 1; j < i; ++ j)
            if (g[j] < g[i]) f[i] = max (f[i], f[j] + 1);
        ans = max(ans, f[i]);
    }
    cout << ans << endl;
    return 0;
}

优化 o ( n l o g n ) o(n log n) o(nlogn)

思路: 对于一个上升子序列, 对于每一项,较小的数作为子序列的项,很显然机会更多

对于每一个位置上的数,如果它大于当前子序列的头,那么就更新子序列的长度,否则就更新第一个大于等于这个数的值。
我们可以发现,更新到原来的值并不会改变原来的最长的上升的子序列,且如果刚好更新到了最后一个的值,那么就证明我们找到了一个结尾更小的最长上升子序列
我们在更新原数列里的值的时候,维护的是原来那一段单调上升的每一位最小的子序列,以供最后结尾更新
很显然,由于单调上升,所以我们可以使用二分去找

代码 :
#include <bits/stdc++.h>
const int N = 1e5 + 111;
using namespace std;
int n, g[N], f[N], l;
int main() {
    cin >> n;
    for (int i = 1; i <= n; ++ i)
        cin >> g[i];
    f[0] = -0x3f3f3f3f;
    for (int i = 1; i <= n; ++ i) 
        if (f[l] < g[i]) f[++ l] = g[i];
        else f[lower_bound(f + 1, f + 1 + l, g[i]) - f] = g[i];
    cout << l << endl;
    return 0;
}

优化的应用

题目

在这里插入图片描述

思路

乍看这道题可能与最长上升子序列没有什么关系,因为这是一个最长公共子序列
可是它的数据范围高达 1 0 6 10^6 106, 如果我们还是使用最长公共子序列来思考这道题可能就比较麻烦
我们可以发现,它的两个序列的值都在 [ 1 , 1 0 6 ] [1, 10^6] [1,106] 内,并且第一个序列没有重复元素。
对于两个序列的公共子序列来说,我们可以把第一个序列的值和下标做一个变换,让值来当下标,下标来当值。这样我们就可以构造出一个以下标为值的序列
对于第二个序列来说,就可以根据第一个序列所映射出来的下标,来构造出自己与第一个序列所对应的值的下标。
由于最长公共子序列一定是满足下标单调递增的,且两个序列都有这个元素的序列值。
而现在,我们构造出来的数组就是一个以下标为值的且两个序列公共值的序列。
(也可以看成把第二个序列映射到第一个序列中去,它们下标之间的关系)
对于一个一系列值组成的序列,要找出其最长的单调递增的子序列。
这就是最长上升子序列的模板了
又因为数据有 1 0 6 10 ^ 6 106 ,所以我们要加上优化即可

代码 :
#include <bits/stdc++.h>
const int N = 1e6 + 111;
using namespace std;
int n, x, l, g[N], f[N], b[N];
int main() {
    cin >> n;
    memset(g, -1, sizeof g);
    for (int i = 1; i <= n; ++ i) 
        scanf("%d",&x), g[x] = i;
    for (int i = 1; i <= n; ++ i)
        scanf("%d",&x), b[i] = g[x];
    for (int i = 1; i <= n; ++ i) {
        if (b[i] == -1) continue;
        if (f[l] < b[i]) f[++ l] = b[i];
        else f[lower_bound(f + 1, f + 1 + l, b[i]) - f] = b[i];
    }
    cout << l << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值