【JDK源码】两万字暴淦ConcurrentHashMap

开篇问题

(1)ConcurrentHashMap与HashMap的数据结构是否一样?

(2)HashMap在多线程环境下何时会出现并发安全问题?

(3)ConcurrentHashMap是怎么解决并发安全问题的?

(4)ConcurrentHashMap使用了哪些锁?

(5)ConcurrentHashMap的扩容是怎么进行的?

(6)ConcurrentHashMap是否是强一致性的?

简介

ConcurrentHashMap是HashMap的线程安全版本,内部也是使用(数组 + 链表 + 红黑树)的结构来存储元素。

相比于同样线程安全的HashTable来说,效率等各方面都有极大地提高。

参考
【JDK源码】HashMap
【JDK源码】HashTable

各种锁简介

了解完AQS再来简单看看各种锁

(1)synchronized

java中的关键字,内部实现为监视器锁,主要是通过对象监视器在对象头中的字段来表明的。

synchronized从旧版本到现在已经做了很多优化了,在运行时会有三种存在方式:偏向锁,轻量级锁,重量级锁。

偏向锁,是指一段同步代码一直被一个线程访问,那么这个线程会自动获取锁,降低获取锁的代价。

轻量级锁,是指当锁是偏向锁时,被另一个线程所访问,偏向锁会升级为轻量级锁,这个线程会通过自旋的方式尝试获取锁,不会阻塞,提高性能。

重量级锁,是指当锁是轻量级锁时,当自旋的线程自旋了一定的次数后,还没有获取到锁,就会进入阻塞状态,该锁升级为重量级锁,重量级锁会使其他线程阻塞,性能降低。

(2)CAS*

CAS,Compare And Swap,它是一种乐观锁,认为对于同一个数据的并发操作不一定会发生修改,在更新数据的时候,尝试去更新数据,如果失败就不断尝试。

(3)volatile(非锁)

java中的关键字,当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。(这里牵涉到java内存模型的知识,可以参考JMM与Volatile

volatile只保证可见性,不保证原子性,比如 volatile修改的变量 i,针对i++操作,不保证每次结果都正确,因为i++操作是两步操作,相当于 i = i +1,先读取,再加1,这种情况volatile是无法保证的。

(4)自旋锁

自旋锁,是指尝试获取锁的线程不会阻塞,而是循环的方式不断尝试,这样的好处是减少线程的上下文切换带来的开锁,提高性能,缺点是循环会消耗CPU。

(5)分段锁

分段锁,是一种锁的设计思路,它细化了锁的粒度,主要运用在ConcurrentHashMap中,实现高效的并发操作,当操作不需要更新整个数组时,就只锁数组中的一项就可以了。

(6)ReentrantLock

可重入锁,是指一个线程获取锁之后再尝试获取锁时会自动获取锁,可重入锁的优点是避免死锁。

其实,synchronized也是可重入锁。

源码分析

成员属性

// 散列表数组最大容量值
private static final int MAXIMUM_CAPACITY = 1 << 30;

// 散列表默认容量值16
private static final int DEFAULT_CAPACITY = 16;

// 最大的数组大小(非2的幂) toArray和相关方法需要(并不是核心属性)
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

// jdk1.7遗留下来的,用来表示并发级别的属性
// jdk1.8只有在初始化的时候用到,不再表示并发级别了~ 1.8以后并发级别由散列表长度决定
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

// 负载因子:表示散列表的填满程度~ 在ConcurrentHashMap中,该属性是固定值0.75,不可修改~
private static final float LOAD_FACTOR = 0.75f;

// 树化阈值:散列表的一个桶中链表长度达到8时候,可能发生链表树化
static final int TREEIFY_THRESHOLD = 8;

// 反树化阈值:散列表的一个桶中的红黑树元素个数小于6时候,将红黑树转换回链表结构
static final int UNTREEIFY_THRESHOLD = 6;

// 散列表长度达到64,且某个桶位中的链表长度达到8,才会发生树化
static final int MIN_TREEIFY_CAPACITY = 64;

// 控制线程迁移数据的最小步长(桶位的跨度~)
private static final int MIN_TRANSFER_STRIDE = 16;

// 固定值16,与扩容相关,计算扩容时会根据该属性值生成一个扩容标识戳
private static int RESIZE_STAMP_BITS = 16;

// (1 << (32 - RESIZE_STAMP_BITS)) - 1 = 65535:1 << 16 -1
// 表示并发扩容最多容纳的线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

// 也是扩容相关属性,在扩容分析的时候会用到~
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

// 当node节点的hash值为-1:表示当前节点是FWD(forwarding)节点(已经被迁移的节点)
static final int MOVED     = -1;
// 当node节点的hash值为-2:表示当前节点已经树化,且当前节点为TreeBin对象~,TreeBin对象代理操作红黑树
static final int TREEBIN   = -2; 
// 当node节点的hash值为-3:
static final int RESERVED  = -3;
// 0x7fffffff 十六进制转二进制值为:1111111111111111111111111111111(31个1)
// 作用是将一个二进制负数与1111111111111111111111111111111 进行按位与(&)运算时,会得到一个正数,但不是取绝对值
static final int HASH_BITS = 0x7fffffff; 

// 当前系统的CPU数量
static final int NCPU = Runtime.getRuntime().availableProcessors();

// JDK1.8 序列化为了兼容 JDK1.7的ConcurrentHashMap用到的属性 (非核心属性)
private static final ObjectStreamField[] serialPersistentFields = {
    new ObjectStreamField("segments", Segment[].class),
    new ObjectStreamField("segmentMask", Integer.TYPE),
    new ObjectStreamField("segmentShift", Integer.TYPE)
};

// 散列表table
transient volatile Node<K,V>[] table;

// 新表的引用:扩容过程中,会将扩容中的新table赋值给nextTable,(保持引用),扩容结束之后,这里就会被设置为NULL
private transient volatile Node<K,V>[] nextTable;

// 与LongAdder中的baseCount作用相同: 当未发生线程竞争或当前LongAdder处于加锁状态时,增量会被累加到baseCount
private transient volatile long baseCount;

// 表示散列表table的状态: 
// sizeCtl<0时:
// 情况一、sizeCtl=-1: 表示当前table正在进行初始化(即,有线程在创建table数组),当前线程需要自旋等待...
// 情况二、表示当前table散列表正在进行扩容,高16位表示扩容的标识戳,低16位表示扩容线程数:(1 + nThread) 即,当前参与并发扩容的线程数量。
// sizeCtl=0时:表示创建table散列表时,使用默认初始容量DEFAULT_CAPACITY=16
// sizeCtl>0时:
// 情况一、如果table未初始化,表示初始化大小
// 情况二、如果table已经初始化,表示下次扩容时,触发条件(阈值)
private transient volatile int sizeCtl;

// 扩容过程中,记录当前进度。所有的线程都需要从transferIndex中分配区间任务,并去执行自己的任务
private transient volatile int transferIndex;

// LongAdder中,cellsBusy表示对象的加锁状态:
// 0: 表示当前LongAdder对象处于无锁状态
// 1: 表示当前LongAdder对象处于加锁状态
private transient volatile int cellsBusy;

// LongAdder中的cells数组,当baseCount发生线程竞争后,会创建cells数组,
// 线程会通过计算hash值,去取到自己的cell,将增量累加到指定的cell中
// 总数 = sum(cells) + baseCount
private transient volatile CounterCell[] counterCells;

构造方法

   /**
     * Creates a new, empty map with the default initial table size (16). 默认初始化为16
     */
    public ConcurrentHashMap() {
    }

    /**
     * 传入初始化容量initialCapacity。但真的容量是initialCapacity的最小2次幂,比如传入9,初始化容量=16
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                    // 最大容量MAXIMUM_CAPACITY = 1 << 30
                   MAXIMUM_CAPACITY :
                   // tableSizeFor方法就是让9变为16的
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

    /**
     * Creates a new map with the same mappings as the given map.
     *
     * @param m the map
     */
    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        // 默认16,DEFAULT_CAPACITY=16
        this.sizeCtl = DEFAULT_CAPACITY;
        putAll(m);
    }

    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

    /**
     * @param loadFactor the load factor (table density) for
     * establishing the initial table size 确定初始表大小
     * @param concurrencyLevel the estimated number of concurrently 估计并发的
     * updating threads. The implementation may use this value as
     * a sizing hint. 更新线程。实现可以使用此值作为调整大小的提示。
     */
    public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

构造方法与HashMap对比可以发现,没有了HashMap中的threshold(阈值)和loadFactor(装载因子),而是改用了sizeCtl来控制,而且只存储了容量在里面,那么它是怎么用的呢?官方给出对sizeCtl的解释如下:

(1)-1,表示有线程正在进行初始化操作

(2)-(1 + nThreads),表示有n个线程正在一起扩容(这里其实sizeCtl=-(1 + nThreads)不准确,因为sizeCtl高16位还存储着扩容邮戳,后面有)

(3)0,默认值,后续在真正初始化的时候使用默认容量,也就是在initTable的时候给的16

(4)> 0,表示初始化或扩容完成后下一次的扩容门槛

  • tableSizeFor
private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    // 原理就是把十进制c变为二进制,然后把c二进制数全为1,比如原来 1010=> 1111;最后在+1,说明变为c的最小2次幂
    // 比如原来是是9(1001)先变为15(1111),最后再+1(10000)
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

添加元素

  • 其中用到的方法:spread、initTable、tabAt、helpTransfer、putTreeVal、treeifyBin、addCount
public V put(K key, V value) {
    return putVal(key, value, false);
}

// onlyIfAbsent:是否替换数据:
// 如果为false,则当put数据时,遇到Map中有相同K,V的数据,则将其替换
// 如果为true,则当put数据时,遇到Map中有相同K,V的数据,则不做替换,不插入
final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key和value都不能为null
    if (key == null || value == null) throw new NullPointerException();
    // 计算hash值 通过spread方法,可以让高位也能参与进寻址运算,使最终得到的hash值更分散
    int hash = spread(key.hashCode());
    // 要插入的元素所在桶的元素个数。=2 表示当前桶位可能已经树化为红黑树了
    int binCount = 0;
    // 死循环,结合CAS使用(如果CAS失败,则会重新取整个桶进行下面的流程)
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            // 如果桶未初始化或者桶个数为0,则初始化桶
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果要插入的元素所在的桶还没有元素,则把这个元素插入到这个桶中
            if (casTabAt(tab, i, null,
                    new Node<K,V>(hash, key, value, null)))
                // 如果使用CAS插入元素时,发现已经有元素了,则进入下一次循环,重新操作
                // 如果使用CAS插入元素成功,则break跳出循环,流程结束
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            // 如果要插入的元素所在的桶的第一个元素的hash是MOVED(其他线程正在扩容,并且该桶已经被迁移的节点),则当前线程帮忙一起迁移元素
            tab = helpTransfer(tab, f);
        else {
            // 如果这个桶不为空且不在迁移元素,则锁住这个桶(分段锁)
            // 并查找要插入的元素是否在这个桶中
            // 存在,则替换值(因为onlyIfAbsent=false)
            // 不存在,则插入到链表结尾或插入树中
            V oldVal = null;// 原来的值 后面判断会用
            // 锁的是一个桶f
            synchronized (f) {
                // 再次检测第一个元素是否有变化,如果有变化则进入下一次循环,从头来过
                if (tabAt(tab, i) == f) {
                    // 如果第一个元素的hash值大于等于0(说明不是在迁移,也不是树)
                    // 那就是桶中的元素使用的是链表方式存储
                    if (fh >= 0) {
                        // 桶中元素个数赋值为1
                        binCount = 1;
                        // 遍历整个桶,每次结束binCount加1
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                            (ek != null && key.equals(ek)))) {
                                // 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
                                // 并退出循环
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                // 如果到链表尾部还没有找到元素
                                // 就把它插入到链表结尾并退出循环
                                pred.next = new Node<K,V>(hash, key,
                                        value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 如果第一个元素是树节点
                        Node<K,V> p;
                        // 桶中元素个数赋值为2
                        binCount = 2;
                        // 调用红黑树的插入方法插入元素
                        // 如果成功插入则返回null
                        // 否则返回寻找到的节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                value)) != null) {
                            // 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
                            // 并退出循环
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            // 如果binCount不为0,说明成功插入了元素或者寻找到了元素
            if (binCount != 0) {
                // 如果链表元素个数达到了8 TREEIFY_THRESHOLD=8,则尝试树化
                // 因为上面把元素插入到树中时,binCount只赋值了2,并没有计算整个树中元素的个数
                // 所以不会重复树化
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                // 如果要插入的元素已经存在,则返回旧值
                if (oldVal != null)
                    return oldVal;
                // 退出外层大循环,流程结束
                break;
            }
        }
        }
        // 成功插入元素,元素个数加1(是否要扩容在这个里面)
        addCount(1L, binCount);
        // 成功插入元素返回null,这里表示这个元素以前不存在
        return null;
    }

整体流程跟HashMap比较类似,大致是以下几步:

(1)如果桶数组未初始化,则初始化;

(2)如果待插入的元素所在的桶为空,则尝试把此元素直接插入到桶的第一个位置;

(3)如果正在扩容,则当前线程一起加入到扩容的过程中;

(4)如果待插入的元素所在的桶不为空且不在迁移元素则锁住这个桶(分段锁)

(5)如果当前桶中元素以链表方式存储,则在链表中寻找该元素或者插入元素;

(6)如果当前桶中元素以红黑树方式存储,则在红黑树中寻找该元素或者插入元素;

(7)如果元素存在,则返回旧值;

(8)如果元素不存在,整个Map的元素个数加1,并检查是否需要扩容,返回null;

添加元素操作中使用的锁主要有(自旋锁 + CAS + synchronized + 分段锁)

为什么使用synchronized而不是ReentrantLock?

因为synchronized已经得到了极大地优化,在特定情况下并不比ReentrantLock差。

  • spread
static final int spread(int h) {
    // 让h的低16与h的高16位异或,然后在和HASH_BITS(0x7fffffff也就是2的31次方)按位与
    // 目的就是为了减少hash冲突
    return (h ^ (h >>> 16)) & HASH_BITS;
}
  • initTable:第一次放元素时,初始化桶数组。

  • tabAt:获取 tab(Node[]) 数组指定下标 i 的Node结点(头结点)

  • helpTransfer:线程添加元素时发现正在扩容且当前元素所在的桶元素已经迁移完成了,则协助迁移其它桶的元素。

  • putTreeVal:向树结点中添加数据

  • treeifyBin:树化

  • addCount:判断是否需要扩容

初始化桶数组

initTable第一次放元素时,初始化桶数组。

private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        if ((sc = sizeCtl) < 0)
            // 如果sizeCtl<0说明正在初始化或者扩容,让出CPU
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            // 如果把sizeCtl原子更新为-1成功,则当前线程进入初始化
            // 如果原子更新失败则说明有其它线程先一步进入初始化了,则进入下一次循环
            // 如果下一次循环时还没初始化完毕,则sizeCtl<0进入上面if的逻辑让出CPU
            // 如果下一次循环更新完毕了,但是进入到table.length!=0,也退出退出循环
            try {
                // 再次检查table是否为空,防止ABA问题,也就是防止别的线程已经初始化完毕了,就不在继续初始化了
                if ((tab = table) == null || tab.length == 0) {
                    // 如果sc为0则使用默认值16,这里就是初始化数组了容量了。sc也就是sizeCtl
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    // 新建数组
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    // 赋值给table桶数组
                    table = tab = nt;
                    // 设置sc为数组长度的0.75倍
                    // n - (n >>> 2) = n - n/4 = 0.75n
                    // 可见这里装载因子和扩容门槛都是写死了的
                    // 这也正是没有threshold和loadFactor属性的原因
                    sc = n - (n >>> 2);
                }
            } finally {
                // 把sc赋值给sizeCtl,这时存储的是扩容门槛
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

(1)使用CAS锁控制只有一个线程初始化桶数组,并且当我们构造方法中没有传参数时,这里默认给的16,int n = (sc > 0) ? sc : DEFAULT_CAPACITY sc=sizeCtl的;

(2)sizeCtl在初始化后存储的是扩容门槛

(3)扩容门槛写死的是桶数组大小的0.75倍,桶数组大小即map的容量,也就是最多存储多少个元素。

判断是否需要扩容

每次添加元素后,元素数量加1,并判断是否达到扩容门槛,达到了则进行扩容或协助扩容。

private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
    // 这里使用的思想跟LongAdder类是一模一样的
    // 把数组的大小存储根据不同的线程存储到不同的段上(也是分段锁的思想)
    // 并且有一个baseCount,优先更新baseCount,如果失败了再更新不同线程对应的段
    // 这样可以保证尽量小的减少冲突

    // 先尝试把数量加到baseCount上,如果失败再加到分段的CounterCell上
    if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        CounterCell a; long v; int m;
        boolean uncontended = true;
        // 如果as为空
        // 或者长度为0
        // 或者当前线程所在的段为null
        // 或者在当前线程的段上加数量失败
        if (as == null || (m = as.length - 1) < 0 ||
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                !(uncontended =
                        U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            // 强制增加数量(无论如何数量是一定要加上的,并不是简单地自旋)
            // 不同线程对应不同的段都更新失败了
            // 说明已经发生冲突了,那么就对counterCells进行扩容
            // 以减少多个线程hash到同一个段的概率
            fullAddCount(x, uncontended);
            return;
        }
        if (check <= 1)
            return;
        // 计算元素个数
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        // 如果元素个数达到了扩容门槛,则进行扩容
        // 注意,正常情况下sizeCtl存储的是扩容门槛,即容量的0.75倍
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                (n = tab.length) < MAXIMUM_CAPACITY) {
            // rs是扩容时的一个邮戳标识
            int rs = resizeStamp(n);
            if (sc < 0) {
                // sc<0说明正在扩容中
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                    // 扩容已经完成了,退出循环
                    // 正常应该只会触发nextTable==null这个条件,其它条件没看出来何时触发
                    break;

                // 扩容未完成,则当前线程加入迁移元素中
                // 并把扩容线程数加1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                    (rs << RESIZE_STAMP_SHIFT) + 2))// RESIZE_STAMP_SHIFT=16
                // 这里是触发扩容的那个线程进入的地方
                // sizeCtl的高16位存储着rs这个扩容邮戳
                // sizeCtl的低16位存储着扩容线程数加1,即(1+nThreads)
                // 所以官方说的扩容时sizeCtl的值为 -(1+nThreads)是错误的

                // 进入迁移元素
                transfer(tab, null);
            // 重新计算元素个数
            s = sumCount();
        }
    }
}

(1)元素个数的存储方式类似于LongAdder类存储在不同的段上,减少不同线程同时更新size时的冲突;(可以参考【JDK源码】并发原子类LongAdder)

(2)计算元素个数时把这些段的值及baseCount相加算出总的元素个数;

(3)正常情况下sizeCtl存储着扩容门槛,扩容门槛为容量的0.75倍;

(4)扩容时sizeCtl高位存储扩容邮戳(resizeStamp),低位存储扩容线程数加1(1+nThreads);

(5)其它线程添加元素后如果发现存在扩容,也会加入的扩容行列中来

协助扩容(迁移元素)

线程添加元素时发现正在扩容且当前元素所在的桶元素已经迁移完成了,则协助迁移其它桶的元素

final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    // 如果桶数组不为空,并且当前桶第一个元素为ForwardingNode类型,并且nextTab不为空
    // 说明当前桶已经迁移完毕了,才去帮忙迁移其它桶的元素
    // 扩容时会把旧桶的第一个元素置为ForwardingNode,并让其nextTab指向新桶数组
    if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);
        // sizeCtl<0,说明正在扩容
        while (nextTab == nextTable && table == tab &&
                (sc = sizeCtl) < 0) {
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            // 扩容线程数加1
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                // 当前线程帮忙迁移元素
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

当前桶元素迁移完成了才去协助迁移其它桶元素;

迁移元素

扩容时容量变为两倍,并把部分元素迁移到其它桶中。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    if (nextTab == null) {            // initiating
        // 如果nextTab为空,说明还没开始迁移,
        // 就新建一个新桶数组
        try {
            // 新桶数组是原桶的两倍
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;// nextTable表示新数组的引用
        transferIndex = n;
    }
    // 新桶数组大小
    int nextn = nextTab.length;
    // 新建一个ForwardingNode类型的节点,并把新桶数组存储在里面
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    boolean advance = true;
    boolean finishing = false; // to ensure sweep before committing nextTab
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        // 整个while循环就是在算i的值,过程太复杂,不用太关心
        // i的值会从n-1依次递减
        // 其中n是旧桶数组的大小,也就是说i从15开始一直减到1这样去迁移元素
        while (advance) {
            int nextIndex, nextBound;
            if (--i >= bound || finishing)
                advance = false;
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                    (this, TRANSFERINDEX, nextIndex,
                            nextBound = (nextIndex > stride ?
                                    nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        if (i < 0 || i >= n || i + n >= nextn) {
            // 如果一次遍历完成了
            // 也就是整个map所有桶中的元素都迁移完成了
            int sc;
            if (finishing) {
                // 如果全部迁移完成了,则替换旧桶数组,并把全局变量nextTable = null;
                // 并设置下一次扩容门槛为新桶数组容量的0.75倍
                nextTable = null;
                table = nextTab;
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 当前线程扩容完成,把扩容线程数-1
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    // 扩容完成两边肯定相等
                    return;
                // 把finishing设置为true
                // finishing为true才会走到上面的if条件
                finishing = advance = true;
                // i重新赋值为n
                // 这样会再重新遍历一次桶数组,看看是不是都迁移完成了
                // 也就是第二次遍历都会走到下面的(fh = f.hash) == MOVED这个条件
                i = n; // recheck before commit
            }
        }
        else if ((f = tabAt(tab, i)) == null)
            // 如果桶中无数据,直接放入ForwardingNode标记该桶已迁移
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
            // 如果桶中第一个元素的hash值为MOVED
            // 说明它是ForwardingNode节点
            // 也就是该桶已迁移
            advance = true; // already processed
        else {
            // 锁定该桶并迁移元素
            synchronized (f) {
                // 再次判断当前桶第一个元素是否有修改
                // 也就是可能其它线程先一步迁移了元素
                if (tabAt(tab, i) == f) {
                    // 把一个链表分化成两个链表
                    // 规则是桶中各元素的hash与桶大小n进行与操作
                    // 等于0的放到低位链表(low)中,不等于0的放到高位链表(high)中
                    // 其中低位链表迁移到新桶中的位置相对旧桶不变
                    // 高位链表迁移到新桶中位置正好是其在旧桶的位置加n
                    // 这也正是为什么扩容时容量在变成两倍的原因
                    Node<K,V> ln, hn;
                    if (fh >= 0) {
                        // 第一个元素的hash值大于等于0
                        // 说明该桶中元素是以链表形式存储的
                        // 这里与HashMap迁移算法基本类似
                        // 唯一不同的是多了一步寻找lastRun
                        // 这里的lastRun是提取出链表后面不用处理再特殊处理的子链表
                        // 比如所有元素的hash值与桶大小n与操作后的值分别为 0 0 4 4 0 0 0
                        // 则最后后面三个0对应的元素肯定还是在同一个桶中
                        // 这时lastRun对应的就是倒数第三个节点
                        int runBit = fh & n;
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        // 看看最后这几个元素归属于低位链表还是高位链表
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        // 遍历链表,把hash&n为0的放在低位链表中
                        // 不为0的放在高位链表中
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 低位链表的位置不变
                        setTabAt(nextTab, i, ln);
                        // 高位链表的位置是原位置加n
                        setTabAt(nextTab, i + n, hn);
                        // 标记当前桶已迁移
                        setTabAt(tab, i, fwd);
                        // advance为true,返回上面进行--i操作
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        // 如果第一个元素是树节点
                        // 也是一样,分化成两颗树
                        // 也是根据hash&n为0放在低位树中
                        // 不为0放在高位树中
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        // 遍历整颗树,根据hash&n是否为0分化成两颗树
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        // 如果分化的树中元素个数小于等于6,则退化成链表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        // 低位树的位置不变
                        setTabAt(nextTab, i, ln);
                        // 高位树的位置是原位置加n
                        setTabAt(nextTab, i + n, hn);
                        // 标记该桶已迁移
                        setTabAt(tab, i, fwd);
                        // advance为true,返回上面进行--i操作
                        advance = true;
                    }
                }
            }
        }
    }
}

(1)新桶数组大小是旧桶数组的两倍;

(2)迁移元素先从靠后的桶开始

(3)迁移完成的桶在里面放置一ForwardingNode类型的元素,标记该桶迁移完成;

(4)迁移时根据hash&n是否等于0把桶中元素分化成两个链表或树;

(5)低位链表(树)存储在原来的位置;

(6)高位链表(树)存储在原来的位置加n的位置;

(7)迁移元素时会锁住当前桶,也是分段锁的思想;

删除元素

删除元素跟添加元素一样,都是先找到元素所在的桶,然后采用分段锁的思想锁住整个桶,再进行操作。

public V remove(Object key) {
    // 调用替换节点方法
    return replaceNode(key, null, null);
}

final V replaceNode(Object key, V value, Object cv) {
    // 计算hash
    int hash = spread(key.hashCode());
    // 自旋
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0 ||
                (f = tabAt(tab, i = (n - 1) & hash)) == null)
            // 如果目标key所在的桶不存在,跳出循环返回null
            break;
        else if ((fh = f.hash) == MOVED)
            // 如果正在扩容中,协助扩容
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 标记是否处理过
            boolean validated = false;
            synchronized (f) {
                // 再次验证当前桶第一个元素是否被修改过
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) {
                        // fh>=0表示是链表节点
                        validated = true;
                        // 遍历链表寻找目标节点
                        for (Node<K,V> e = f, pred = null;;) {
                            K ek;
                            if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                            (ek != null && key.equals(ek)))) {
                                // 找到了目标节点
                                V ev = e.val;
                                // 检查目标节点旧value是否等于cv
                                if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                    oldVal = ev;
                                    if (value != null)
                                        // 如果value不为空则替换旧值
                                        e.val = value;
                                    else if (pred != null)
                                        // 如果前置节点不为空
                                        // 删除当前节点
                                        pred.next = e.next;
                                    else
                                        // 如果前置节点为空
                                        // 说明是桶中第一个元素,删除之
                                        setTabAt(tab, i, e.next);
                                }
                                break;
                            }
                            pred = e;
                            // 遍历到链表尾部还没找到元素,跳出循环
                            if ((e = e.next) == null)
                                break;
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 如果是树节点
                        validated = true;
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> r, p;
                        // 遍历树找到了目标节点
                        if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                            V pv = p.val;
                            // 检查目标节点旧value是否等于cv
                            if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                oldVal = pv;
                                if (value != null)
                                    // 如果value不为空则替换旧值
                                    p.val = value;
                                else if (t.removeTreeNode(p))
                                    // 如果value为空则删除元素
                                    // 如果删除后树的元素个数较少则退化成链表
                                    // t.removeTreeNode(p)这个方法返回true表示删除节点后树的元素个数较少
                                    setTabAt(tab, i, untreeify(t.first));
                            }
                        }
                    }
                }
            }
            // 如果处理过,不管有没有找到元素都返回
            if (validated) {
                // 如果找到了元素,返回其旧值
                if (oldVal != null) {
                    // 如果要替换的值为空,元素个数减1
                    if (value == null)
                        addCount(-1L, -1);
                    return oldVal;
                }
                break;
            }
        }
    }
    // 没找到元素返回空
    return null;
}

(1)计算hash;

(2)如果所在的桶不存在,表示没有找到目标元素,返回;

(3)如果正在扩容,则协助扩容完成后再进行删除操作

(4)如果是以链表形式存储的,则遍历整个链表查找元素,找到之后再删除;

(5)如果是以树形式存储的,则遍历树查找元素,找到之后再删除;

(6)如果是以树形式存储的,删除元素之后树较小,则退化成链表;

(7)如果确实删除了元素,则整个map元素个数减1,并返回旧值;

(8)如果没有删除元素,则返回null;

获取元素

获取元素,根据目标key所在桶的第一个元素的不同采用不同的方式获取元素,关键点在于find()方法的重写。

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // 计算hash
    int h = spread(key.hashCode());
    // 如果元素所在的桶存在且里面有元素
    if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果第一个元素就是要找的元素,直接返回
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        else if (eh < 0)
            // hash小于0,说明是树或者正在扩容
            // 使用find寻找元素,find的寻找方式依据Node的不同子类有不同的实现方式
            return (p = e.find(h, key)) != null ? p.val : null;

        // 遍历整个链表寻找元素
        while ((e = e.next) != null) {
            if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

(1)hash到元素所在的桶;

(2)如果桶中第一个元素就是该找的元素,直接返回;

(3)如果是树或者正在迁移元素,则调用各自Node子类的find()方法寻找元素

(4)如果是链表,遍历整个链表寻找元素;

(5)获取元素没有加锁

获取元素个数

元素个数的存储也是采用分段的思想,获取元素个数时需要把所有段加起来。

public int size() {
    // 调用sumCount()计算元素个数
    long n = sumCount();
    return ((n < 0L) ? 0 :
            (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                    (int)n);
}

final long sumCount() {
    // 计算CounterCell所有段及baseCount的数量之和
    CounterCell[] as = counterCells; CounterCell a;
    long sum = baseCount;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

(1)元素的个数依据不同的线程存在在不同的段里;

(2)计算CounterCell所有段及baseCount的数量之和;

(3)获取元素个数没有加锁;

总结

(1)ConcurrentHashMap是HashMap的线程安全版本;

(2)ConcurrentHashMap采用**(数组 + 链表 + 红黑树)**的结构存储元素;

(3)ConcurrentHashMap相比于同样线程安全的HashTable,效率要高很多;

(4)ConcurrentHashMap采用的锁有 synchronized,CAS,自旋锁,分段锁,volatile等

(5)ConcurrentHashMap中没有threshold和loadFactor这两个字段,而是采用sizeCtl来控制;

(6)sizeCtl = -1,表示正在进行初始化;

(7)sizeCtl = 0,默认值,表示后续在真正初始化的时候使用默认容量;

(8)sizeCtl > 0,在初始化之前存储的是传入的容量,在初始化或扩容后存储的是下一次的扩容门槛;

(9)sizeCtl = (resizeStamp << 16) + (1 + nThreads),表示正在进行扩容,高位存储扩容邮戳,低位存储扩容线程数加1;

(10)更新操作时如果正在进行扩容,当前线程协助扩容

(11)更新操作会采用synchronized锁住当前桶的第一个元素,这是分段锁的思想;

(12)整个扩容过程都是通过CAS控制sizeCtl这个字段来进行的,这很关键;

(13)迁移完元素的桶会放置一个ForwardingNode节点,以标识该桶迁移完毕;

(14)元素个数的存储也是采用的分段思想,类似于LongAdder的实现

(15)元素个数的更新会把不同的线程hash到不同的段上,减少资源争用;

(16)元素个数的更新如果还是出现多个线程同时更新一个段,则会扩容段(CounterCell)

(17)获取元素个数是把所有的段(包括baseCount和CounterCell)相加起来得到的;

(18)查询操作是不会加锁的,所以ConcurrentHashMap不是强一致性的;

(19)ConcurrentHashMap中不能存储key或value为null的元素;

文章参考
路飞 ConcurrentHashMap源码解析_01 成员属性、内部类、构造方法分析
ConcurrentHashMap源码解析(jdk1.8)
ConcurrentHashMap源码分析(JDK8版本)
【十四】Java集合之ConcurrentHashMap源码分析(1.8)

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

早上真起不来!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值