容斥恒等式的证明

容斥恒等式的证明

推广公式
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
(a)设A、B、C为三个事件,则下列恒等式成立:
P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A ∩ B ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C ) P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
(b)设 A 1 A_1 A1, A 2 A_2 A2, A 3 A_3 A3,…, A n A_n An为n个事件,令 S 1 S_1 S1={ i ∣ 1 ≤ i ≤ n i|1\leq i \leq n i∣1in}, S 2 S_2 S2={ ( i 1 , i 2 ) ∣ 1 ≤ i 1 < i 2 ≤ n (i_1,i_2)|1\leq i_1 < i_2 \leq n (i1,i2)∣1i1<i2n},一般的,令 S 1 S_1 S1为满足条件$ \le i_1 < i_2<… < i_m\le n 的 m 维指标, ( 的m维指标,( m维指标,(i_1,…i_m$)的集合,则下列恒等式成立:
P ( ∪ k = 1 n A k ) = ∑ i ∈ S 1 P ( A i ) − ∑ ( i 1 , i 2 ) ∈ S 2 P ( A i 1 ∩ A i 2 ) + ∑ i 1 , i 2 , i 3 ∈ S 3 P ( A i 1 ∩ A i 2 ∩ A i 3 ) − . . . + ( − 1 ) n − 1 P ( ∩ k = 1 n A k ) P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k}) P(k=1nAk)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n1P(k=1nAk)

解:(a)利用公式 P ( X ∪ Y ) = P ( X ) + P ( Y ) − P ( X ∩ Y ) P(X\cup Y)=P(X)+P(Y)-P(X\cap Y) P(XY)=P(X)+P(Y)P(XY) ( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) (A\cup B)\cap C=(A\cap C)\cup (B\cap C) (AB)C=(AC)(BC),我们有
P ( A ∪ B ∪ C ) = P ( A ∪ B ) + P ( C ) − P ( ( A ∪ B ) ∩ C )                                   = P ( A ∪ B ) + P ( C ) − P ( ( A ∩ C ) ∪ ( B ∩ C ) )                                   = P ( A ∪ B ) + P ( C ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C )                                   = P ( A ) + P ( B ) − P ( A ∩ B ) + P ( C ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C )                                   = P ( A ) + P ( B ) + P ( C ) − P ( A ∩ B ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C ) P(A\cup B\cup C)=P(A\cup B)+P(C)-P((A\cup B )\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P((A\cap C )\cup (B\cap C))\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A\cup B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)-P(A\cap B)+P(C)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ =P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B\cap C) P(ABC)=P(AB)+P(C)P((AB)C)                                 =P(AB)+P(C)P((AC)(BC))                                 =P(AB)+P(C)P(AC)P(BC)+P(ABC)                                 =P(A)+P(B)P(AB)+P(C)P(AC)P(BC)+P(ABC)                                 =P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)
(b)利用归纳法,主要推断部分可以模仿(a)中步骤

n=2时, P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB).

假设n=k-1,有
P ( ∪ k = 1 k − 1 A k ) = ∑ i ∈ S 1 P ( A i ) − ∑ ( i 1 , i 2 ) ∈ S 2 P ( A i 1 ∩ A i 2 ) + ∑ i 1 , i 2 , i 3 ∈ S 3 P ( A i 1 ∩ A i 2 ∩ A i 3 ) − . . . + ( − 1 ) n − 2 P ( ∩ k = 1 k − 1 A i k ) P(\cup^{k-1}_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-2}P(\cap^{k-1}_{k=1}A_{i_k}) P(k=1k1Ak)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n2P(k=1k1Aik)

则n=k时, P ( ∪ k = 1 n A k ) = P ( ∪ k = 1 k − 1 A k ∪ A k ) P(\cup^n_{k=1}A_k)=P(\cup^{k-1}_{k=1}A_k\cup A_k) P(k=1nAk)=P(k=1k1AkAk)

∪ i = 1 k − 1 A i = B \cup^{k-1}_{i=1}A_i=B i=1k1Ai=B,

P ( ∪ k = 1 n A k ) = P ( B ∪ A k ) P(\cup^n_{k=1}A_k)=P(B\cup A_k) P(k=1nAk)=P(BAk)
所以,

P ( ∪ k = 1 n A k ) = P ( B ∪ A k ) = P ( B ) + P ( A k ) − P ( B ∩ A k ) P(\cup^n_{k=1}A_k)=P(B\cup A_k)=P(B)+P(A_k)-P(B\cap A_k) P(k=1nAk)=P(BAk)=P(B)+P(Ak)P(BAk) (1)

前两个地方都很好推导,主要是最后一项。

P ( B ∩ A k ) = P ( ∪ i = 1 k − 1 A i A k ) = ∑ i = 1 k − 1 P ( A i A k ) + ( − 1 1 ) ∑ 1 ≤ i 1 < i 2 ≤ i k − 1 P ( A i 1 A i 2 A k ) + . . . + ( − 1 ) k − 2 P ( A 1 A 2 . . . A k ) P(B\cap A_k)=P(\cup^{k-1}_{i=1}A_iA_k)\\=\displaystyle \sum_{i=1}^{k-1}P(A_iA_k)+(-1^1) \displaystyle \sum_{1\le i_1<i_2\le i_{k-1}}P(A_{i_1}A_{i_2}A_k)+...+(-1)^{k-2}P(A_1A_2...A_k) P(BAk)=P(i=1k1AiAk)=i=1k1P(AiAk)+(11)1i1<i2ik1P(Ai1Ai2Ak)+...+(1)k2P(A1A2...Ak) (2)

把(2)带入(1),

得到:

P ( ∪ k = 1 n A k ) = ∑ i ∈ S 1 P ( A i ) − ∑ ( i 1 , i 2 ) ∈ S 2 P ( A i 1 ∩ A i 2 ) + ∑ i 1 , i 2 , i 3 ∈ S 3 P ( A i 1 ∩ A i 2 ∩ A i 3 ) − . . . + ( − 1 ) n − 1 P ( ∩ k = 1 n A k ) P(\cup^n_{k=1}A_k)=\displaystyle \sum_{i\in S_1}P(A_i)-\displaystyle\sum_{(i_1,i_2)\in S_2}P(A_{i_1} \cap A_{i_2})+\displaystyle \sum_{i_1,i_2,i_3 \in S_3}P(A_{i_1} \cap A_{i_2} \cap A_{i_3})-...+(-1)^{n-1}P(\cap^n_{k=1}A_{k}) P(k=1nAk)=iS1P(Ai)(i1,i2)S2P(Ai1Ai2)+i1,i2,i3S3P(Ai1Ai2Ai3)...+(1)n1P(k=1nAk)

得证。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个人的码行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值