链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
题目描述
给定 n,kn,kn,k。求有多少个整数对 (v,u)(v,u)(v,u) 满足 1≤v<u≤n1\le v < u \le n1≤v<u≤n 且 k≤u+v,k≤u×vk \le u+v ,k \le u \times vk≤u+v,k≤u×v。
输入描述:
第一行一个 TTT 表示数据组数,接下来 TTT 行每行两个整数 n,kn,kn,k。
1≤n,k≤1091\le n,k \le 10^91≤n,k≤109,1≤T≤1051\le T \le 10^51≤T≤105
输出描述:
TTT 行,每行一个整数,表示有多少个满足条件的数对。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define int long long
signed main()
{
int t;scanf("%lld",&t);
while(t--)
{
int n,k;scanf("%lld%lld",&n,&k);
int ans=max(0ll,n-k+1);
if(k==1) ans--;
if(k>2*n-1) ans=0;
else if(k<=5) ans+=((n-1)*(n-2))/2;
else
{
if(k%2==0)
{
int mx=max(2ll,k-n);
if((n-k/2)==1) ans+=1;
else if((n-k/2)>1)
ans+=((1+n-k/2)*(n-k/2))/2;
if((k/2)-mx==1) ans+=n-k/2;
else if((k/2)-mx>1)ans+=((max(n-k+3,1ll)+n-k/2)*((k/2)-mx))/2;
}
else
{
/*if(2*n-1==k) ans=1;
else*/
int mx=max(2ll,k-n);
if((n-(k-1)/2)==1) ans+=1;
else if((n-(k-1)/2)>1) ans+=((n-(k-1)/2)*(1+n-(k-1)/2))/2;
if(((k-1)/2-mx)==1) ans+=n-(k-1)/2-1;
else if(((k-1)/2-mx)>1)
ans+=((max(1ll,n-k+3)+(n-(k-1)/2-1))*((k-1)/2-mx))/2;
}
}
printf("%lld\n",ans);
}
}