线性规划+等差数列

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题目描述

给定 n,kn,kn,k。求有多少个整数对 (v,u)(v,u)(v,u) 满足 1≤v<u≤n1\le v < u \le n1≤v<u≤n 且 k≤u+v,k≤u×vk \le u+v ,k \le u \times vk≤u+v,k≤u×v。

输入描述:

 

第一行一个 TTT 表示数据组数,接下来 TTT 行每行两个整数 n,kn,kn,k。

1≤n,k≤1091\le n,k \le 10^91≤n,k≤109,1≤T≤1051\le T \le 10^51≤T≤105

输出描述:

TTT 行,每行一个整数,表示有多少个满足条件的数对。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define int long long
signed main()
{
    int t;scanf("%lld",&t);
    while(t--)
    {
        int n,k;scanf("%lld%lld",&n,&k);
        int ans=max(0ll,n-k+1);
        if(k==1) ans--;
        if(k>2*n-1) ans=0;
        else if(k<=5) ans+=((n-1)*(n-2))/2;
        else 
        {
            if(k%2==0)
            {
                int mx=max(2ll,k-n);
                if((n-k/2)==1) ans+=1;
                else if((n-k/2)>1)
                ans+=((1+n-k/2)*(n-k/2))/2;
                if((k/2)-mx==1) ans+=n-k/2;
                else if((k/2)-mx>1)ans+=((max(n-k+3,1ll)+n-k/2)*((k/2)-mx))/2;
            }
            else
            {
                /*if(2*n-1==k) ans=1;
                else*/
                int mx=max(2ll,k-n);
                if((n-(k-1)/2)==1) ans+=1;
                else if((n-(k-1)/2)>1) ans+=((n-(k-1)/2)*(1+n-(k-1)/2))/2;
                if(((k-1)/2-mx)==1) ans+=n-(k-1)/2-1;
                else if(((k-1)/2-mx)>1)
                ans+=((max(1ll,n-k+3)+(n-(k-1)/2-1))*((k-1)/2-mx))/2;
            }
        }
        printf("%lld\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值