数据结构 C语言版
实验2 基于顺序表的非递减有序表的合并
(1)实验目的
通过该实验,深入理解顺序表的逻辑结构、物理结构等概念,掌握顺序表基本操作的编程实现,注意顺序表插入、删除等操作过程中数据元素的移动现象,培养学生编写程序时,要考虑程序的健壮性,全面考虑问题,熟练掌握通过函数参数返回函数结果的办法。
(2)实验内容
编程实现顺序表下教材第二章定义的线性表的基本操作,并根据已经实现的基本操作,实现两个非递减有序的线性表的合并,注意,合并时,如果有重复的元素,请保留一个。
(3)实验要求
(a)求前驱是指,输入一个元素值(而不是位置),求该元素在顺序表中的直接前驱元素值。求后继是指:输入一个元素值(而不是位置),求该元素在顺序表中的直接后继元素值;(b)为了方便修改数据元素的类型,请使用类型重定义,可以方便修改线性表中的数据元素的类型;(c)大部分函数的返回结果应是函数执行是否成功的一种状态,执行成功了,才返回具体的结果值;(d)对每个功能进行测试时,要求把不合法的情况也测试一下。具体见下面的测试用例;(e)采用菜单形式对应各个操作,使其编成一个完整的小软件,参考界面如下。
注:销毁是指free(L.elem); L.elem=NULL; L.length=0; L.listsize=0; return TRUE。清空是指:L.length=0 ;return TRUE。
(4)验收/测试用例
通过菜单调用各个操作,测试点:
没有初始化前进行其他操作,程序是否能控制住;即,如果没有初始化线性表,其他的功能是无法正常进行的,如果选择进行其他操作,要提示先进行初始化;
初始化一个顺序表(初始化顺序表,是指初始化一个空的线性表,里面的元素个数是0);
插入数据(位置, 数据),要测插入位置不合法的情况(0,1)、(2,1),正确插入3个数据(1,20)、(1,10)、(3,30);
显示顺序表中的数据,屏幕输出10, 20, 30;
判空,屏幕输出顺序表非空;
输出顺序表长度,屏幕输出3;
获取指定位置元素,要测指定位置在【1,3】范围之外的情况和之内的情况;
定位,输入:40, 输出:不存在,输入20,输出位置为2;
求直接前驱,要测求第一个元素的前驱、不存在顺序表中的元素的直接前驱,其他元素的直接前驱;输入10,输出:第一个元素没有前驱,输入20,输出前驱是10,输入40,输出该元素不存在;
求直接后继,要测最后一个元素的后继、不存在顺序表中的元素的直接后继,其他元素的直接后继;同上求前驱;
删除,要测位置在【1,3】范围之外的情况和之内的情况;
清空操作后再测长度,判断是否为空;
销毁顺序表,销毁线性表之后还能不能做插入,删除等操作,如果选其他操作,就要提示线性表已经销毁不存在;
测试合并操作,第一个线性表中的元素是(2,3,4,5),第二个线性表中的内容是(1,4,5,6,7),合并后的结果,请输出。
主要源代码
#include<iostream>
#include<malloc.h>
#define MaxSize
using namespace std;
typedef char ElemType;
typedef struct{
ElemType elem[MaxSize];
int length;
}SqList;
//1.构造空线性表
void InitList(SqList *&L)
{
L=new SqList;
L->length=0;
int num;
cout << "请输入你所要插入的数据数量。" << endl;
cin >> num;
cout << "请输入你所要插入的数据。" << endl;
for(int i=0;i<num;i++){
cin >> L->elem[i];
L->length++;
}
cout << "线性表初始化成功。" << endl << endl;
}
//2.摧毁线性表
void DestroyList (SqList *L)
{
delete(L);
}
//3.清空线性表
void ClearList (SqList *L)
{
L->length=0;
cout << "线性表清空成功。" << endl << endl;
}
//4. 判空
void ListEmpty (SqList *L)
{
if(L->length==0)
{
cout<<"已经清空"<<endl;
}
else
{
cout<