二叉树的最近公共祖先

这篇博客介绍了如何在普通二叉树和二叉搜索树(BST)中寻找两个节点的最低公共祖先(LCA)。在普通二叉树中,采用后序遍历的方式,如果当前节点的左右子树分别包含一个目标节点,则当前节点即为LCA。在BST中,由于节点值有序,可以直接根据值判断目标节点位于当前节点的左侧还是右侧,从而减少搜索范围,提高效率。
摘要由CSDN通过智能技术生成

在这里插入图片描述

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root == p || root == q || root == NULL) return root;
        TreeNode* left = lowestCommonAncestor(root->left, p, q);     //左
        TreeNode* right = lowestCommonAncestor(root->right, p, q);    //右
        if (left != NULL && right != NULL) {            //中
            return root;
        } else if (left != NULL && right == NULL) {
            return left;
        } else if (left == NULL && right != NULL) {
            return right;
        } else {
            return NULL;
        }
    }
};

思路:首先得知道如何去判断p和q的公共祖先,就是该结点如果左子树和右子树各有一个p或q,则这个结点就是公共祖先,还有一种情况是p或者q就是公共祖先。然后这题得用后序遍历,这样才容易找到其祖先,因为要从下往上找嘛,而且正是因为从下往上找,找到第一个返回值就是答案。当只有一边的子树为空是,就说明p,q都在同一边的子树中,所以直接返回即可,返回的是p或q中深度小的。
这题要遍历整个树但是还要返回值的原因就是这题是后序遍历,就是回溯,回溯需要对返回值进行处理。

那如果是BST呢

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root->val > p->val && root->val > q->val) {     //左
            TreeNode* left = lowestCommonAncestor(root->left, p, q);
            if (left != NULL) {
                return left;
            }
        } else if (root->val < p->val && root->val < q->val) {     //右
            TreeNode* right = lowestCommonAncestor(root->right, p, q);
            if (right != NULL) {
                return right;
            }
        }
            return root;     //中
    }
};

BST的特性就是可以直接知道p或者q到底在root的左子树还是右子树,不需要像普通二叉树一样去判断是否为NULL来确定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值