- 【NOIP2015模拟10.20】平均数 (File IO): input:average.in output:average.out Time Limits: 1000 ms Memory Limits: 65536 KB
Detailed Limits Special JudgeDescription 给出包含一个N个整数的数组A。找出一段长度至少为K的连续序列,最大化它的平均值。
请注意:一段子序列的平均值是子序列中所有数的和除以它的长度。Input 第一行包含两个整数N(1<=N<=300000),K(1<=K<=N)。
第二行包含N个整数,代表数组A,1<=ai<=10^6。Output 一行一个实数,代表最大的平均值。允许在0.001以内的绝对误差。
Sample Input 输入1: 4 1 1 2 3 4 输入2: 4 2 2 4 3 4 输入3: 6 3 7 1 2 1 3 6
Sample Output 输出1:
4.000000 输出2:
3.666666 输出3:
3.333333Data Constraint 对于30%的数据,N<=5000。 对于100%的数据,1<=N<=300000, 1<=K<=N,
1<=Ai<=1000000。
二分,注意精度。
#include<bits/stdc++.h>
using namespace std;
int n,k,i,j,tot,a[311111];
double ans,zzhx,l,r,mid,s[311111],mas;
bool check(double st)
{
mas=99999999;
for(int i=1;i<=n;i++)
{
s[i]=(s[i-1]-st+a[i]);
}
for(int i=k;i<=n;i++)
{
if(s[i-k]<mas)
{
mas=s[i-k];
}
if(s[i]>=mas) return true;
}
return false;
}
int main()
{
freopen("average.in","r",stdin);
freopen("average.out","w",stdout);
scanf("%d%d",&n,&k);
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
l=1;
r=1000001;
while(r-l>=0.000001)
{
mid=(l+r)/2.0000;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.12f\n",l);
}
再上例题
公路修建问题 (Standard IO)
Time Limits: 1000 ms Memory Limits: 65536 KB Detailed Limits
Description
OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。
OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。
OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率,OIERAssociation希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIERAssociation也不希望为一条公路花费太多的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。
Input
从文件road.in中读入数据,文件第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。N和k如前所述,m表示有m对景点之间可以修公路。以下的m行,每一行有4个正整数a,b,c1,c2,(1≤a,b≤n,a≠b,1≤c2≤c1≤30000)。表示在景点a与b之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。
Output
输出文件road.out的第一行有一个数据,表示花费最大的公路的花费。
Sample Input
输入1:
4 2 5
1 2 6 5
1 3 3 1
2 3 9 4
2 4 6 1
3 4 4 2
输入2:
4 1 5
1 2 6 5
1 3 3 1
2 3 9 4
2 4 6 1
3 4 4 3
Sample Output
输出1:
4
输出2:
3
#include<bits/stdc++.h>
using namespace std;
int n,m,k,i,j,f[111111],a[111111],b[111111],x[111111],y[111111],l,r,roa[111111],rob[111111],row[111111],rr,zs,kkg;
void kp(int l,int r)
{
int i=l,j=r,mid=row[(l+r)/2];
while(i<=j)
{
while(row[i]<mid) i++;
while(row[j]>mid) j--;
if(i<=j)
{
row[0]=row[i];
row[i]=row[j];
row[j]=row[0];
roa[0]=roa[i];
roa[i]=roa[j];
roa[j]=roa[0];
rob[0]=rob[i];
rob[i]=rob[j];
rob[j]=rob[0];
i++;
j--;
}
}
if(i<r) kp(i,r);
if(l<j) kp(l,j);
}
int find(int xx)
{
if(f[xx]==xx) return xx;
else return f[xx]=find(f[xx]);
}
int main()
{
scanf("%d%d%d",&n,&k,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d%d%d",&a[i],&b[i],&x[i],&y[i]);
}
int mid;
l=1;
r=30000;
while(l<r)
{
zs=0;
kkg=0;
mid=(l+r)/2;
for(i=1;i<=n;i++)
{
f[i]=i;
}
rr=0;
for(i=1;i<=m;i++)
{
if(x[i]<=mid)
{
rr++;
roa[rr]=a[i];
rob[rr]=b[i];
row[rr]=1;
}
if(y[i]<=mid)
{
rr++;
roa[rr]=a[i];
rob[rr]=b[i];
row[rr]=2;
}
}
kp(1,rr);
for(i=1;i<=rr;i++)
{
int xx=find(roa[i]),yy=find(rob[i]);
if(xx==yy) continue;
if(row[i]==1)
{
kkg++;
}
zs++;
f[xx]=yy;
}
if(zs==n-1&&kkg>=k)
{
r=mid;
}
else
{
l=mid+1;
}
}
printf("%d\n",r);
}
- SERN的野望 (Standard IO)
Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits
Goto ProblemSet
Description
Error! Human is dead. Mismatch.
SERN妄图研发出时间机器,然而现在却只有一堆失败的实验品。
然而,SERN妄图通过这些失败的试验品研究出正确的道路,而这首先就需要将这些失败的实验品归类。
每一个实验品有一个转移强度D和转移距离R。由于SERN血腥残忍、不择手段,所以所有实验品的转移强度均不相同,转移距离也均不相同。
SERN惊讶的发现,一个时间机器的性能极大地取决于它在高斯平面上的投影。
定义一个时间机器α在高斯平面上的投影λ(α)“傅里叶包含”【“傅里叶包含"记作”)("】另一个时间机器β在高斯平面上的投影λ(β)【此关系记作"α)(β"】,当且仅当α的转移强度大于β的转移强度且α的转移距离大于β的转移距离。
定义黎曼-洛伦兹函数ζ(A,S)为真当且仅当在实验品集合S中的任何实验品在高斯平面上的投影都不傅里叶包含实验品A在高斯平面上的投影,亦即对于任意B∈S,"B)(A"不成立。
而对实验品的归类方式可以分为以下几个步骤:
S1:令i=0
S2:令i=i+1 令S=还没被分组的实验品集合
S3:对于每一件S中的武器A,如果黎曼-洛伦兹函数ζ(A,S)为真,则将武器A标记为第i组
【注意S在这个过程中始终保持不变,这称为分组的牛顿-科特斯一致性】
S4:如果所有实验品均被分组则结束,否则转S2
给定N个实验品的D和R,你的任务是将其分组。
Input
输入文件的第一行包含一个正整数N,表示实验品的个数。
接下来N行,每行两个正整数D,R,描述一个实验品的D和R.
Output
输出文件包含N行,每行一个正整数,第i行的数表示第i个实验品被分在了哪一组。
Sample Input
5
1 4
2 2
3 3
4 1
5 5
Sample Output
2
3
2
2
1
Data Constraint
对于20%的数据,N<=100
对于40%的数据,N<=3000
对于100%的数据,N<=100000,1<=R,D<=10^9
#include<bits/stdc++.h>
using namespace std;
int n,m,i,j,kkg,ans[1111111],a[1111111],b[1111111],krw[1111111],kl,cs[1111111];
void kp(int l,int r)
{
int i=l,j=r,mid=a[(l+r)/2];
while(i<=j)
{
while(a[i]>mid) i++;
while(a[j]<mid) j--;
if(i<=j)
{
a[0]=a[i];
a[i]=a[j];
a[j]=a[0];
b[0]=b[i];
b[i]=b[j];
b[j]=b[0];
krw[0]=krw[i];
krw[i]=krw[j];
krw[j]=krw[0];
i++;
j--;
}
}
if(i<r) kp(i,r);
if(l<j) kp(l,j);
}
int main()
{
int l,r,mid;
kkg=0;
memset(krw,0,sizeof krw);
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&b[i]);
krw[i]=i;
}
kp(1,n);
for(i=1;i<=n;i++)
{
l=1;
r=kkg+1;
mid=(l+r)/2;
while(l<=r)
{
if(cs[mid]<b[i])
{
r=mid-1;
}
else
{
l=mid+1;
}
mid=(l+r)/2;
}
if(r>=kkg)
{
kkg++;
cs[kkg]=b[i];
ans[krw[i]]=kkg;
}
else
{
r++;
cs[r]=b[i];
ans[krw[i]]=r;
}
}
for(i=1;i<=n;i++)
{
printf("%d\n",ans[i]);
}
}