二分 例题

这是两道编程题目,第一题要求在给定数组中找到一段长度至少为K的连续子序列,使得其平均值最大。第二题涉及公路修建问题,需要在满足一级公路数量至少为K的情况下,使最贵的一条公路费用最小。两题都采用了二分查找的方法来求解。
摘要由CSDN通过智能技术生成
  1. 【NOIP2015模拟10.20】平均数 (File IO): input:average.in output:average.out Time Limits: 1000 ms Memory Limits: 65536 KB
    Detailed Limits Special Judge

Description 给出包含一个N个整数的数组A。找出一段长度至少为K的连续序列,最大化它的平均值。
请注意:一段子序列的平均值是子序列中所有数的和除以它的长度。

Input 第一行包含两个整数N(1<=N<=300000),K(1<=K<=N)。
第二行包含N个整数,代表数组A,1<=ai<=10^6。

Output 一行一个实数,代表最大的平均值。允许在0.001以内的绝对误差。

Sample Input 输入1: 4 1 1 2 3 4 输入2: 4 2 2 4 3 4 输入3: 6 3 7 1 2 1 3 6

Sample Output 输出1:
4.000000 输出2:
3.666666 输出3:
3.333333

Data Constraint 对于30%的数据,N<=5000。 对于100%的数据,1<=N<=300000, 1<=K<=N,
1<=Ai<=1000000。

二分,注意精度。

#include<bits/stdc++.h>
using namespace std;
int n,k,i,j,tot,a[311111];
double ans,zzhx,l,r,mid,s[311111],mas;
bool check(double st)
{
	mas=99999999;
	for(int i=1;i<=n;i++)
	{
		s[i]=(s[i-1]-st+a[i]);
	}
	for(int i=k;i<=n;i++)
	{
		if(s[i-k]<mas)
		{
			mas=s[i-k];
		}
		if(s[i]>=mas) return true;
	}
	return false;
}
int main()
{
	freopen("average.in","r",stdin);
	freopen("average.out","w",stdout);
	scanf("%d%d",&n,&k);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
	}
	l=1;
	r=1000001;
	while(r-l>=0.000001)
	{
		mid=(l+r)/2.0000;
		if(check(mid)) l=mid;
		else r=mid;
	}
	printf("%.12f\n",l);
}

再上例题

公路修建问题 (Standard IO)
Time Limits: 1000 ms Memory Limits: 65536 KB Detailed Limits

Description
OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。
OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。
OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率,OIERAssociation希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIERAssociation也不希望为一条公路花费太多的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。

Input
从文件road.in中读入数据,文件第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。N和k如前所述,m表示有m对景点之间可以修公路。以下的m行,每一行有4个正整数a,b,c1,c2,(1≤a,b≤n,a≠b,1≤c2≤c1≤30000)。表示在景点a与b之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。

Output
输出文件road.out的第一行有一个数据,表示花费最大的公路的花费。

Sample Input
输入1:
4 2 5
1 2 6 5
1 3 3 1
2 3 9 4
2 4 6 1
3 4 4 2

输入2:
4 1 5
1 2 6 5
1 3 3 1
2 3 9 4
2 4 6 1
3 4 4 3

Sample Output
输出1:
4

输出2:
3

#include<bits/stdc++.h>
using namespace std;
int n,m,k,i,j,f[111111],a[111111],b[111111],x[111111],y[111111],l,r,roa[111111],rob[111111],row[111111],rr,zs,kkg;
void kp(int l,int r)
{
	int i=l,j=r,mid=row[(l+r)/2];
	while(i<=j)
	{
		while(row[i]<mid) i++;
		while(row[j]>mid) j--;
		if(i<=j)
		{
			row[0]=row[i];
			row[i]=row[j];
			row[j]=row[0];
			roa[0]=roa[i];
			roa[i]=roa[j];
			roa[j]=roa[0];
			rob[0]=rob[i];
			rob[i]=rob[j];
			rob[j]=rob[0];
			i++;
			j--;
		}
	}
	if(i<r) kp(i,r);
	if(l<j) kp(l,j);
}
int find(int xx)
{
	if(f[xx]==xx) return xx;
	else return f[xx]=find(f[xx]);
}
int main()
{
	scanf("%d%d%d",&n,&k,&m);
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%d%d",&a[i],&b[i],&x[i],&y[i]);
	}
	int mid;
	l=1;
	r=30000;
	while(l<r)
	{
		zs=0;
		kkg=0;
		mid=(l+r)/2;
		for(i=1;i<=n;i++)
		{
			f[i]=i;
		}
		rr=0;
		for(i=1;i<=m;i++)
		{
			if(x[i]<=mid)
			{
				rr++;
				roa[rr]=a[i];
				rob[rr]=b[i];
				row[rr]=1;
			}
			if(y[i]<=mid)
			{
				rr++;
				roa[rr]=a[i];
				rob[rr]=b[i];
				row[rr]=2;
			}
		}
		kp(1,rr);
		for(i=1;i<=rr;i++)
		{
			int xx=find(roa[i]),yy=find(rob[i]);
			if(xx==yy) continue;
			if(row[i]==1)
			{
				kkg++;
			}
			zs++;
			f[xx]=yy;
		}
		if(zs==n-1&&kkg>=k)
		{
			r=mid;
		}
		else
		{
			l=mid+1;
		}
	}
	printf("%d\n",r);
}

  1. SERN的野望 (Standard IO)
    Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits
    Goto ProblemSet

Description
Error! Human is dead. Mismatch.
SERN妄图研发出时间机器,然而现在却只有一堆失败的实验品。
然而,SERN妄图通过这些失败的试验品研究出正确的道路,而这首先就需要将这些失败的实验品归类。
每一个实验品有一个转移强度D和转移距离R。由于SERN血腥残忍、不择手段,所以所有实验品的转移强度均不相同,转移距离也均不相同。
SERN惊讶的发现,一个时间机器的性能极大地取决于它在高斯平面上的投影。
定义一个时间机器α在高斯平面上的投影λ(α)“傅里叶包含”【“傅里叶包含"记作”)("】另一个时间机器β在高斯平面上的投影λ(β)【此关系记作"α)(β"】,当且仅当α的转移强度大于β的转移强度且α的转移距离大于β的转移距离。
定义黎曼-洛伦兹函数ζ(A,S)为真当且仅当在实验品集合S中的任何实验品在高斯平面上的投影都不傅里叶包含实验品A在高斯平面上的投影,亦即对于任意B∈S,"B)(A"不成立。
而对实验品的归类方式可以分为以下几个步骤:
S1:令i=0
S2:令i=i+1 令S=还没被分组的实验品集合
S3:对于每一件S中的武器A,如果黎曼-洛伦兹函数ζ(A,S)为真,则将武器A标记为第i组
【注意S在这个过程中始终保持不变,这称为分组的牛顿-科特斯一致性】
S4:如果所有实验品均被分组则结束,否则转S2

给定N个实验品的D和R,你的任务是将其分组。

Input
输入文件的第一行包含一个正整数N,表示实验品的个数。
接下来N行,每行两个正整数D,R,描述一个实验品的D和R.

Output
输出文件包含N行,每行一个正整数,第i行的数表示第i个实验品被分在了哪一组。

Sample Input
5
1 4
2 2
3 3
4 1
5 5

Sample Output
2
3
2
2
1

Data Constraint
对于20%的数据,N<=100
对于40%的数据,N<=3000
对于100%的数据,N<=100000,1<=R,D<=10^9

#include<bits/stdc++.h>
using namespace std;
int n,m,i,j,kkg,ans[1111111],a[1111111],b[1111111],krw[1111111],kl,cs[1111111];
void kp(int l,int r)
{
	int i=l,j=r,mid=a[(l+r)/2];
	while(i<=j)
	{
		while(a[i]>mid) i++;
		while(a[j]<mid) j--;
		if(i<=j)
		{
			a[0]=a[i];
			a[i]=a[j];
			a[j]=a[0];
			b[0]=b[i];
			b[i]=b[j];
			b[j]=b[0];
			krw[0]=krw[i];
			krw[i]=krw[j];
			krw[j]=krw[0];
			i++;
			j--;
		}
	}
	if(i<r) kp(i,r);
	if(l<j) kp(l,j);
}
int main()
{
	int l,r,mid;
	kkg=0;
	memset(krw,0,sizeof krw);
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf("%d%d",&a[i],&b[i]);
		krw[i]=i;
	}
	kp(1,n);
    for(i=1;i<=n;i++)
	{
		l=1;
		r=kkg+1;
		mid=(l+r)/2;
		while(l<=r)
		{
			if(cs[mid]<b[i])
			{
				r=mid-1;
			}
			else
			{
				l=mid+1;
			}
			mid=(l+r)/2;
		}
		if(r>=kkg)
		{
			kkg++;
			cs[kkg]=b[i];
			ans[krw[i]]=kkg;
		}
		else
		{
			r++;
			cs[r]=b[i];
			ans[krw[i]]=r;
		}
	}
	for(i=1;i<=n;i++)
	{
		printf("%d\n",ans[i]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值