一.冒泡排序
1.冒泡排序的基本思想
冒泡排序是一种交换排序,通过反复移位交换,每次将最大的数,像冒泡一样放到最后
2.冒泡算法的具体实现
3.时间复杂度分析
一共四个数字,共需要跑三趟,第一趟需要比较3次,第二趟需要比较2次,第三趟需要比较1次
得出结论:当有n个数字时,需要跑n-1趟,而第一趟要比较n-1次,最后一趟要比较一次,所以总次数为:(n-1)+(n-2)+…+1也就是1/2n*n-1/2n次,那复杂度就是 O(n^2)
4.冒泡代码模板
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length-1-i; j++) {
if (arr[j + 1] < arr[j])
int t = arr[j];
arr[j] = arr[j+1];
arr[j+1] = t;
}
}
二.选择排序
1.选择排序的基本思想
A.在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
B.从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾
C.以此类推,直到所有元素均排序完毕
2.选择排序的具体实现
3.选择排序的代码实现
public static void selectSort(int[] arr){
for(int i = 0; i < arr.length-1; i++){
int min = i;
for(int j = i+1; j <arr.length ;j++){
if(arr[j]<arr[min]){
min = j;
}
}
if(min!=i){
swap(arr, i, min);
}
}
}
//完成数组两元素间交换
public static void swap(int[] arr,int a,int b){
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
三.插入排序
1.插入排序的思想
每一步将一个待排序的数据插入到前面已经排好序的有序序列中,直到插完所有元素为止。
2.插入排序的算法实现
3.插入排序代码实现
void StraightSort(int *arr,int len)
{
int tmp;
int i;
int j;
for (i = 1;i < len;i++)
{
tmp = arr[i];
for (j = i - 1;j >= 0 && arr[j] > tmp;j--)
{
arr[j + 1] = arr[j];
}
arr[j + 1] = tmp;
}
}
四.希尔排序
1.希尔排序的简介
希尔排序(Shell’s Sort)是插入排序的一种又称 “缩小增量排序”(Diminishing Increment Sort),是直接插入排序算法的一种更高效的改进版本。该方法因D.L.Shell于1959年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。
2.希尔排序的思路
先取一个小于 n 的整数 d_1 作为第一个增量,把文件的全部记录分组。所有距离为 d_1 的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量 d_{2}<d_{1} 重复上述的分组和排序,直至所取的增量d_{t}=1(d_{t}<d_{t-1}<\cdots <d_{2}<d_{1}),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
3.希尔排序的图解演示
假设,我们有一个数列,初始状态为,一共 8 个元素。
第一轮
我们按下标相隔距离为 4 进行分组 ,这样a[0]与a[4]是一组、a[1]与a[5]是一组、…。如下图所示。
每个分组进行插入排序后,各个分组就变成了有序的,注意整体不一定有序。如下图所示。
第二轮
小增量为上个增量的一半 2,继续划分分组。此时,每个分组元素个数多了,但是,数组变的部分有序了,插入排序效率同样比高。此时的分组情况如下图所示。
对每个分组进行插入排序,使其每个分组各自有序。如下图所示。
第三轮
最后设置增量为上一个增量的一半 1,则整个数组被分为一组,此时,整个数组已经接近有序了,插入排序效率高。如下图所示。
再对分组进行插入排序,使其每个分组各自有序。这样排序完成。
动画展示
4.希尔排序的时间复杂度
平均时间复杂度为O(nlongn)
5.希尔排序的代码实现
public class ShellSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 对 arr 进行拷贝,不改变参数内容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int gap = 1;
while (gap < arr.length/3) {
gap = gap * 3 + 1;
}
while (gap > 0) {
for (int i = gap; i < arr.length; i++) {
int tmp = arr[i];
int j = i - gap;
while (j >= 0 && arr[j] > tmp) {
arr[j + gap] = arr[j];
j -= gap;
}
arr[j + gap] = tmp;
}
gap = (int) Math.floor(gap / 3);
}
return arr;
}
}