堆优化的dijkstra算法

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=150000;
int e[N],ne[N],idx,h[N],w[N];
int dis[N];
bool st[N];
typedef pair<int ,int> PII;
int n,m;

void add(int a,int b,int c)
{
    e[idx]=b;
    ne[idx]=h[a];
    w[idx]=c;
    h[a]=idx++;
}



int dijkstra()
{
    memset(dis,0x3f,sizeof dis);
    dis[1]=0;
     priority_queue<PII,vector<PII>,greater<PII>> heap;
    heap.push({0,1});//加入1号点,也就是初始点。
    while(heap.size())
    {
        PII t=heap.top();
        heap.pop();
        int distance =t.first,v=t.second;
        if(st[v]) continue;
        st[v]=true;
        
        
        
        for(int i=h[v];i!=-1;i=ne[i])   
        {
            int j=e[i];//提取出节点。
            if(dis[j]>distance+w[i])     
            {
                dis[j]=distance+w[i];   //如果该节点对应的距离比能到该节点的最小当前点的distance+权重小,则更新。
                heap.push({dis[j],j});
                
            }
                                               
            
        }
        
        
        
        
    }
    
    if(dis[n]==0x3f3f3f3f) return -1;
    
    return dis[n];
    
    
}


int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
        
        
    }
    
    cout<<dijkstra()<<endl;
    
    return 0;
}

下面来解释本人解题过程中遇到的疑惑。

1.冗余数据从何而来,首先例如2到3有两条 权值分别为2 和3的边。那么就会有两条对应2的数据进入堆中,也就是(dis+3,2)和(dis+2,2)由于堆的性质,距离最短的在最顶端,所以冗余数据没有影响,当确定最短路径后用st标记,那么遍历到冗余数据的时候便可以节省时间也不会使用。

2.入队列中的元素怎么理解。邻接表中储存的是某一节点相连的点,当这一节点被确定为最短点时,其他点(与其有边的)是还未确定的,因此更新长度之后还要将它们放入堆中以便下次更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值