逻辑回归(Logistic Regression)

本文介绍了逻辑回归的基本概念,作为概率分类模型用于处理分类问题。实验使用了iris数据集,并探讨了模型的拟合预测,包括coef_、intercept_和n_iter等属性。此外,还讨论了模型的调参过程,特别是multi_class参数和C参数的影响,揭示了正则化项系数C对模型预测性能的效应。
摘要由CSDN通过智能技术生成

1. 逻辑回归

逻辑回归是一种预测分析,解释因变量与一个或者多个自变量之间的关系,与线性回归不同之处在于它的目标变量有几种类别,所以逻辑回归主要用于解决回归问题。逻辑回归实际上是一个概率分类模型,产生0和1之间的p值。

2.实验数据

使用iris内置的数据集,不需要做预处理。

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
%matplotlib inline

#加载数据
iris = load_iris()
iris_x = iris.data
iris_y = iris.target
#stratify=iris_y是保持测试集与整个数据集里iris_y的数据分类比例一致
train_x, test_x, train_y, test_y = train_test_split(iris_x, iris_y, test_size=0.25, random_state=0, stratify=iris_y)

3.拟合预测

属性:

  • coef_:权重向量
  • intercept:b值
  • n_iter:实际迭代次数

方法:

  • fit(X, y[,sample_weight])训练模型
  • predict(X):用模型进行预测,返回预测值
  • predict_proba(X):返回一个数组,数组元素依次是X预测为
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ryze95

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值