1. 逻辑回归
逻辑回归是一种预测分析,解释因变量与一个或者多个自变量之间的关系,与线性回归不同之处在于它的目标变量有几种类别,所以逻辑回归主要用于解决回归问题。逻辑回归实际上是一个概率分类模型,产生0和1之间的p值。
2.实验数据
使用iris内置的数据集,不需要做预处理。
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
%matplotlib inline
#加载数据
iris = load_iris()
iris_x = iris.data
iris_y = iris.target
#stratify=iris_y是保持测试集与整个数据集里iris_y的数据分类比例一致
train_x, test_x, train_y, test_y = train_test_split(iris_x, iris_y, test_size=0.25, random_state=0, stratify=iris_y)
3.拟合预测
属性:
- coef_:权重向量
- intercept:b值
- n_iter:实际迭代次数
方法:
- fit(X, y[,sample_weight])训练模型
- predict(X):用模型进行预测,返回预测值
- predict_proba(X):返回一个数组,数组元素依次是X预测为