求斐波那契数列的几种方法

一、暴力(递归)

int fib1(int n)
{
    if (n == 1 || n == 2)
        return 1;
    return fib1(n - 1) + fib1(n - 2);
}

这是最常见的写法,在这里我们可以画出递归树

听大佬说,但凡遇到需要递归的问题,最好都画出递归树,对于分析算法的复杂度,寻找算法低效的原因有很大的帮助。
请添加图片描述
递归算法的时间复杂度=子问题分数*解决一个子问题需要的时间
由图我们可以看到,这个递归的时间复杂度为O(2^n),显然是一个指数级别的算法,但凡n大一点点,就爆炸

二、简化:做个备忘录

通过观察上述递归树,发现这个算法低效的原因是,存在大量重复计算

这就是动态规划问题的第一个性质:重叠子问题

怎么解决呢?造一个备忘录,记录子问题的答案鸭。

即,利用一个数组中充当备忘录

int fib2(int n)
{
    if (n <= 2)
        return 1;
    vector<int> memo(n + 1, 0);
    memo[1] = memo[2] = 1;
    return helper(memo, n);
}
int helper(vector<int> &memo, int n)
{
    if (n > 0 && memo[n] == 0)
        memo[n] = helper(memo, n - 1) + helper(memo, n - 2);
    return memo[n];
}

时间复杂度为O(n)

三、深度简化:动态规划

动态规划算法(Dynamic Programming,简称DP),涉及到状态转移方程、重叠子问题、最优子结构等等一些我没听过的高级玩意儿。

动态规划一般遵循一套固定的流程:递归的暴力解法 -> 带备忘录的递归解法 -> 非递归的动态规划解法

由上一步的备忘录,我们决定把备忘录做成一张表,用的时候直接查找就好,时间复杂度为O(1)

int fib3(int n)
{
    vector<int> dp(n + 1, 0);
    dp[1] = dp[2] = 1;
    for (int i = 3; i <= n; i++)
        dp[i] = dp[i - 1] + dp[i - 2];
    return dp[n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值