算法 数论 素数(质数)

这篇博客介绍了素数的基本概念,包括素数的定义和性质。文章详细阐述了判断素数的试除法,其时间复杂度为O(根号n)。接着,博客探讨了两种高效的素数筛法:埃氏筛和欧拉筛,它们的时间复杂度分别为O(nloglogn)和O(n)。这些算法在寻找大量素数时非常有用,是数论和计算机科学中的重要工具。
摘要由CSDN通过智能技术生成


1.素数

素数定义:若一个正整数无法被除了1和它自身之外的任何自然数整除,则称该数为质数(或素数),否则称该正整数为合数。
注:1不是素数(也不是合数),2是素数。

在整个自然数集合中,质数的数量不多,分布比较稀疏。对于一个足够大的整数 N,不超过N的质数大约有N / lnN个,即每 InN 个数中大约有1个质数。

2.判断素数

试除法
时间复杂度:O(根号n)

bool isprime(int n) {
    if(n <= 1) return false;
    for(int i = 2; i <= n/i; i ++)
    if( n % i == 0) return false;
    return true;
}

3.素数筛法

法一:埃氏筛(朴素筛法) 时间复杂度:O(nloglogn)

int prime[N]; 
void isprime(int n){
	prime[0] = prime[1] = 1;
    for(int i = 2; i <= n; i ++) {
        if(prime[i]) continue;
        for(int j = i; j <= n/i; j ++)  prime[i*j] = 1;		
	}
}

法三:欧拉筛(线性筛)时间复杂度:O(n)

int prime[N],cnt;
bool a[N];
void isprime(int n) {
	for(int i = 2 ;i <= n ; i ++) {
		if(!a[i]) prime[cnt++]=i;
		for(int j = 0; prime[j] <= n/i ;j++) {
			a[ prime[j] * j ] = ture;
			if(i%prime[j] == 0 ) break;
		}
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值