1.素数
素数定义:若一个正整数无法被除了1和它自身之外的任何自然数整除,则称该数为质数(或素数),否则称该正整数为合数。
注:1不是素数(也不是合数),2是素数。
在整个自然数集合中,质数的数量不多,分布比较稀疏。对于一个足够大的整数 N,不超过N的质数大约有N / lnN个,即每 InN 个数中大约有1个质数。
2.判断素数
试除法
时间复杂度:O(根号n)
bool isprime(int n) {
if(n <= 1) return false;
for(int i = 2; i <= n/i; i ++)
if( n % i == 0) return false;
return true;
}
3.素数筛法
法一:埃氏筛(朴素筛法) 时间复杂度:O(nloglogn)
int prime[N];
void isprime(int n){
prime[0] = prime[1] = 1;
for(int i = 2; i <= n; i ++) {
if(prime[i]) continue;
for(int j = i; j <= n/i; j ++) prime[i*j] = 1;
}
}
法三:欧拉筛(线性筛)时间复杂度:O(n)
int prime[N],cnt;
bool a[N];
void isprime(int n) {
for(int i = 2 ;i <= n ; i ++) {
if(!a[i]) prime[cnt++]=i;
for(int j = 0; prime[j] <= n/i ;j++) {
a[ prime[j] * j ] = ture;
if(i%prime[j] == 0 ) break;
}
}
}