Spark_Oracle_II_Spark高效处理Oracle时间数据:通过JDBC桥接大数据与数据库的分析之旅

接前文背景,

        当需要从关系型数据库(如Oracle)中读取数据时,Spark提供了JDBC连接功能,允许我们轻松地将数据从Oracle等数据库导入到Spark DataFrame中。然而,在处理时间字段时,可能会遇到一些挑战,特别是在Oracle的DATETIMESTAMP类型与Spark SQL的日期时间类型之间进行转换时。

Spark通过JDBC读取Oracle基本配置

val jdbcUrl = "jdbc:oracle:thin:@hostname:port:sid"  
val connectionProperties = new java.util.Properties()  
connectionProperties.put("user", "username")  
connectionProperties.put("password", "password")  
connectionProperties.put("driver", "oracle.jdbc.driver.OracleDriver")  
  
val df = spark.read.jdbc(jdbcUrl, "your_table", connectionProperties)  
  
df.show()

时间转换

        我一开始的续期就是timestamp类型的且格式为yyyy-mm-dd hh:mm:ss字段转换为特定格式的字符串yyyy-MM-dd的将date类型,这是我最直接的需求。

        我是从Oracle读取出来,在Oracle中字段的类型就是Date,格式是yyyy-mm-dd,但是通过这个spark连接jdbc读取出来,就变成了yyyy-mm-dd hh:mm:ss,字段类型也发生了专变成了timestamp类型,导致后面的处理报错。

  误区:我们能直接将TIMESTAMP类型转换成DateType的同时还保持yyyy-MM-dd的字符串格式,因为DateType在Spark SQL中代表的是没有时间的日期(即只包含年、月、日),但是我们可以迂回啊!

      解决思路:

   //1、先把TIMESTAMP转换为String格式的yyyy-mm-dd
val dfWithStringDate = df.withColumn("stat_date", date_format(col("stat_date"), "yyyy-MM-dd"))  
   //2、再把String格式的yyyy-mm-dd转为Date类型
  .withColumn("stat_date", to_date(col("stat_date")))

        这样得到了一个既包含DateType日期字段也包含StringType(yyyy-MM-dd格式)日期字段的DataFrame。。。。。。。。。。。。。。。。。。。。。。。

        如有其他理解,欢迎交流。

N!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值