2015年第六届C/C++ B组蓝桥杯省赛真题
真题
第一题:奖券数目
题目描述
有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利。
虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求。某抽奖活动的奖券号码是5位数(10000-99999),要求其中不要出现带“4”的号码,主办单位请你计算一下,如果任何两张奖券不重号,最多可发出奖券多少张。
请提交该数字(一个整数),不要写任何多余的内容或说明性文字。
第二题:星系炸弹
题目描述
在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。
请填写该日期,格式为 yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19
请严格按照格式书写。不能出现其它文字或符号。
第三题:三羊献瑞
题目描述
观察下面的加法算式:
祥 瑞 生 辉
+ 三 羊 献 瑞
-------------------
三 羊 生 瑞 气
(如果有对齐问题,可以参看【图1.jpg】)其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
第四题:格子中输出
题目描述
StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。
#include <stdio.h>
#include <string.h>
void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[1000];
strcpy(buf, s);
if(strlen(s)>width-2) buf[width-2]=0;
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
for(k=1; k<(height-1)/2;k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
printf("|");
printf("%*s%s%*s",_____________________________________________); //填空
printf("|\n");
for(k=(height-1)/2+1; k<height-1; k++){
printf("|");
for(i=0;i<width-2;i++) printf(" ");
printf("|\n");
}
printf("+");
for(i=0;i<width-2;i++) printf("-");
printf("+\n");
}
int main()
{
StringInGrid(20,6,"abcd1234");
return 0;
}
对于题目中数据,应该输出:
+------------------+
| |
| abcd1234 |
| |
| |
+------------------+
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
第五题:九数组分数
题目描述
1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。
#include <stdio.h>
void test(int x[])
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) printf("%d / %d\n", a, b);
}
void f(int x[], int k)
{
int i,t;
if(k>=9){
test(x);
return;
}
for(i=k; i<9; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
_____________________________________________ // 填空处
}
}
int main()
{
int x[] = {1,2,3,4,5,6,7,8,9};
f(x,0);
return 0;
}
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
第六题:加法变乘法
题目描述
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+1011+12+…+2728+29+…+49 = 2015
就是符合要求的答案。请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
第七题:牌型种数
题目描述
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
第八题:移动距离
题目描述
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
第九题:垒骰子
题目描述
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms
第十题:生命之树
题目描述
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
题解
第一题:奖券数目
分析
暴力枚举
代码
bool isok(int n){
while (n){
if (n % 10 == 4){
return false;
}
n /= 10;
}
return true;
}
int main(){
int ans = 0;
for (int i = 10000; i <= 99999; i++){
if (isok(i))ans++;
}
cout << ans << endl;
/*ans = 0;
for (int a = 1; a <= 9; a++){
if (a == 4)continue;
for (int b = 0; b <= 9; b++){
if (b == 4)continue;
for (int c = 0; c <= 9; c++){
if (c == 4)continue;
for (int d = 0; d <= 9; d++){
if (d == 4)continue;
for (int e = 0; e <= 9; e++){
if (e == 4)continue;
ans++;
}
}
}
}
}
cout << ans << endl;*/
system("pause");
return 0;
}
ans :52488
第二题:星系炸弹
分析
蓝桥杯非常常见的日期题
注意一下平闰年的判断方法即可
代码
int main(){
vector<int> ys{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
int y = 2014, m = 11, d = 9;
for (int i = 0; i < 1000; i++){
if (((y % 4) == 0 && (y % 100) != 0) || (y%400)==0){
ys[1] = 29;
}
else{
ys[1] = 28;
}
d++;
if (ys[m - 1]+1 == d){
d = 1;
m++;
if (m == 13){
m = 1;
y++;
}
}
}
cout << y << " " << m << " " << d << endl;
return 0;
}
ans :2017-08-05
第三题:三羊献瑞
分析
暴力枚举
代码
int main(){
for (int a = 1; a < 10; a++){
for (int b = 0; b < 10; b++){
if (b == a)continue;
for (int c = 0; c < 10; c++){
if (c == b || c == a)continue;
for (int d = 0; d < 10; d++){
if (d == c || d == b || d == a)continue;
for (int e = 0; e < 10; e++){
if (e == c || e == b || e == a || e==d) continue;
for (int f = 0; f < 10; f++){
if (f == c || f == b || f == a || f == d || f==e) continue;
for (int g = 0; g < 10; g++){
if (g == c || g == b || g == a || g == d || g == e || g== f) continue;
for (int h = 0; h < 10; h++){
if (h == c || h == b || h == a || h == d || h == e || h == f || h==g) continue;
if (a * 1000 + b * 100 + c * 10 + d + e * 1000 + d * 100 + f * 10 + g == a * 10000 + b * 1000 + f * 100 + d * 10 + h){
cout << a << b << c << d << " + " << e << d << f << g << " = " << a << b << f << d << h << endl;
}
}
}
}
}
}
}
}
}
return 0;
}
ans :1085
第四题:格子中输出
分析
填空题
代码
#include <stdio.h>
#include <string.h>
void StringInGrid(int width, int height, const char* s)
{
int i, k;
char buf[1000];
strcpy(buf, s);
if (strlen(s)>width - 2) buf[width - 2] = 0;
printf("+");
for (i = 0; i<width - 2; i++) printf("-");
printf("+\n");
for (k = 1; k<(height - 1) / 2; k++){
printf("|");
for (i = 0; i<width - 2; i++) printf(" ");
printf("|\n");
}
printf("|");
printf("%*s%s%*s", (width-2-strlen(buf))/2,' ',buf,(width-2-strlen(buf))-(width-2-strlen(buf))/2,' '); //填空
printf("|\n");
for (k = (height - 1) / 2 + 1; k<height - 1; k++){
printf("|");
for (i = 0; i<width - 2; i++) printf(" ");
printf("|\n");
}
printf("+");
for (i = 0; i<width - 2; i++) printf("-");
printf("+\n");
}
int main(){
StringInGrid(20, 6, "abcd1234");
system("pause");
return 0;
}
ans :(width-2-strlen(buf))/2,' ',buf,(width-2-strlen(buf))-(width-2-strlen(buf))/2,' '
第五题:九数组分数
分析
填空题
代码
#include <stdio.h>
#include<iostream>
void test(int x[])
{
int a = x[0] * 1000 + x[1] * 100 + x[2] * 10 + x[3];
int b = x[4] * 10000 + x[5] * 1000 + x[6] * 100 + x[7] * 10 + x[8];
if (a * 3 == b) printf("%d / %d\n", a, b);
}
void f(int x[], int k)
{
int i, t;
if (k >= 9){
test(x);
return;
}
for (i = k; i<9; i++){
{t = x[k]; x[k] = x[i]; x[i] = t; }
f(x, k + 1);
{t = x[k]; x[k] = x[i]; x[i] = t; }
// 填空处
}
}
int main()
{
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
f(x, 0);
system("pause");
return 0;
}
ans : {t = x[k]; x[k] = x[i]; x[i] = t; }
第六题:加法变乘法
分析
题目告诉了总数和1225 ,还告诉了 乘号不能相邻, 也就是说 没有连续的乘法 这样的话我们可以用 1225 减去 乘号前后两个数的 和 再加上 两个数的积 ,所得即为改变符号后对原来的影响,遍历两个乘号的位置即可得到答案
代码
int main()
{
for (int i = 1; i < 48; i++){
for (int j = i + 2; j < 49; j++){
if (1225 - (i + (i + 1)) + (i*(i + 1)) - (j + (j + 1)) + (j*(j + 1))==2015){
cout << i << " " << j << endl;
}
}
}
return 0;
}
ans 16
第七题:牌型种数
分析
递归
dfs(n,j) n为当前牌的数量,i为当前牌型,一共有13种牌型,每种牌型有5种情况:一张都不拿,一张,两张,三张,四张。
代码
int ans = 0;
void dfs(int n, int i){
if (n == 13){
ans++;
return;
}
if (i == 13)
return;
for (int j = 0; j <= 4; j++)
dfs(n + j, i + 1);
}
int main()
{
dfs(0, 0);
cout << ans << endl;
return 0;
}
ans 3598180
第八题:移动距离
分析
模拟
首先将小区号,转换成物理坐标,在计算其距离
代码
int main()
{
int w, m, n;
cin >> w >> m >> n;
int mi, mj, ni, nj;
mi = (m - 1) / w;
ni = (n - 1) / w;
mj = m%w == 0 ? w : m%w;
if (mi % 2)
mj = w - mj + 1;
nj = n%w == 0 ? w : n%w;
if (ni % 2)
nj = w - nj + 1;
cout << abs(mj - nj) + abs(mi - ni) << endl;
return 0;
}
第九题:垒骰子
分析
矩阵快速幂
第一次见到这个 矩阵快速幂 它的原理与快速幂相似,区别在于他作用在矩阵上,用矩阵的目的在于容易建立转移方程。
这道题转移方程为:
结果为:
只看这些第一次接触到矩阵快速幂的,可能看不懂,感兴趣的了解一下矩阵快速幂原理
代码
#include<iostream>
#include<string>
#define MOD 1000000007
using namespace std;
//op[i]为筛子 i点 的对立面点数
int op[7] = {0, 4, 5, 6, 1, 2, 3};
//矩阵快速幂
//矩阵
struct M {
long long a[6][6];
M() {
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a[i][j] = 1;
}
}
}
M(int n){
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
a[i][j] = n;
}
}
}
};
//矩阵相乘
M mMultiply(M m1, M m2) {
M ans;
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
ans.a[i][j] = 0;
for (int k = 0; k < 6; ++k) {
ans.a[i][j] = (ans.a[i][j] + m1.a[i][k] * m2.a[k][j]) % MOD;
}
}
}
return ans;
}
//矩阵快速幂
M mPow(M m, int k) {
M ans;//单位矩阵
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
if (i == j)
ans.a[i][j] = 1;
else
ans.a[i][j] = 0;
}
}
while (k != 0) {
if ((k & 1) == 1) {
ans = mMultiply(ans, m);
}
m = mMultiply(m, m);
k >>= 1;//向右移1位
}
return ans;
}
int main() {
int n, m;
cin >> n >> m;
M cMatrix(4);//冲突矩阵
for (int i = 0; i < m; ++i) {
int a, b;
cin >> a >> b;
//完善冲突矩阵
cMatrix.a[op[a] - 1][b - 1] = 0;
cMatrix.a[op[b] - 1][a - 1] = 0;
}
M cMatrix_n_1 = mPow(cMatrix, n - 1);//冲突矩阵的n-1次方
long long ans = 0;
for (int j = 0; j < 6; ++j) {
for (int i = 0; i < 6; ++i) {
ans = (ans + cMatrix_n_1.a[i][j]) % MOD;
}
}
//
cout<<(ans * 4) % MOD<<endl;
return 0;
}
第十题:生命之树
分析
dfs+dp
以每个节点为根,求其最大评分,遍历的同时保存已经求出的根节点评分。
#include<iostream>
using namespace std;
const int MAXN = 1e5;
long long w[MAXN + 1];//每个点权重
long long v[MAXN + 1];//每个点作为根节点时得到的最大圈和
long long ans;
vector<vector<int>> g(MAXN + 1);//邻接表
using namespace std;
//fa 为父节点
void dfs(int root, int fa){
v[root] = w[root];
//遍历每个孩子
for (int i = 0; i<g[root].size(); ++i){
int son = g[root][i];
//与父结点不同,防止死循环,因为树中不存在环,所以这种方式就可以避免死循环
if (son != fa){
dfs(son, root);
if (v[son]>0){
v[root] += v[son];
}
}
}
//更新ans
ans = max(ans, v[root]);
}
int main(){
int n;
cin >> n;
for (int i = 1; i <= n; i++){
cin >> w[i];
}
ans = w[1];
for (int j = 1; j <= n - 1; j++){
int a, b;
cin >> a >> b;
g[a].push_back(b);
g[b].push_back(a);
}
ans = w[1];
dfs(1, 0);
cout << ans << endl;
return 0;
}