2015年第六届C/C++ B组蓝桥杯省赛真题

本文详细解析了2015年第六届C/C++B组蓝桥杯省赛的十道编程题目,包括奖券数目计算、日期运算、汉字数字对应、字符串居中显示、分数构建、加法改乘法、牌型计数、移动距离计算、骰子堆叠方式和生命之树最大评分等问题,涵盖了算法设计、日期处理、字符串操作等多个方面。
摘要由CSDN通过智能技术生成

真题

第一题:奖券数目

题目描述
有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利。
虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求。某抽奖活动的奖券号码是5位数(10000-99999),要求其中不要出现带“4”的号码,主办单位请你计算一下,如果任何两张奖券不重号,最多可发出奖券多少张。
请提交该数字(一个整数),不要写任何多余的内容或说明性文字。

第二题:星系炸弹

题目描述
在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。
请填写该日期,格式为 yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19
请严格按照格式书写。不能出现其它文字或符号。

第三题:三羊献瑞

题目描述
观察下面的加法算式:

    祥 瑞 生 辉
  + 三 羊 献 瑞
-------------------
 三 羊 生 瑞 气

(如果有对齐问题,可以参看【图1.jpg】)其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。

第四题:格子中输出

题目描述
StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。

#include <stdio.h>
#include <string.h>

void StringInGrid(int width, int height, const char* s)
{
	int i,k;
	char buf[1000];
	strcpy(buf, s);
	if(strlen(s)>width-2) buf[width-2]=0;
	
	printf("+");
	for(i=0;i<width-2;i++) printf("-");
	printf("+\n");
	
	for(k=1; k<(height-1)/2;k++){
		printf("|");
		for(i=0;i<width-2;i++) printf(" ");
		printf("|\n");
	}
	
	printf("|");
	
	printf("%*s%s%*s",_____________________________________________);  //填空
	          
	printf("|\n");
	
	for(k=(height-1)/2+1; k<height-1; k++){
		printf("|");
		for(i=0;i<width-2;i++) printf(" ");
		printf("|\n");
	}	
	
	printf("+");
	for(i=0;i<width-2;i++) printf("-");
	printf("+\n");	
}

int main()
{
	StringInGrid(20,6,"abcd1234");
	return 0;
}

对于题目中数据,应该输出:

  
			+------------------+
			|                  |
			|     abcd1234     |
			|                  |
			|                  |
			+------------------+

注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

第五题:九数组分数

题目描述
1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。

#include <stdio.h>
void test(int x[])
{
	int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
	int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
	
	if(a*3==b) printf("%d / %d\n", a, b);
}

void f(int x[], int k)
{
	int i,t;
	if(k>=9){
		test(x);
		return;
	}
	
	for(i=k; i<9; i++){
		{t=x[k]; x[k]=x[i]; x[i]=t;}
		f(x,k+1);
		_____________________________________________ // 填空处
	}
}
	
int main()
{
	int x[] = {1,2,3,4,5,6,7,8,9};
	f(x,0);	
	return 0;
}


注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。

第六题:加法变乘法

题目描述
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+1011+12+…+2728+29+…+49 = 2015
就是符合要求的答案。请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。

第七题:牌型种数

题目描述
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。

第八题:移动距离

题目描述
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)

输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n 两楼间最短移动距离。

例如:
用户输入:
6 8 2
则,程序应该输出:
4

再例如:
用户输入:
4 7 20
则,程序应该输出:
5

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms

第九题:垒骰子

题目描述
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms

第十题:生命之树

题目描述
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。

「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。

「输出格式」
输出一行一个数,表示上帝给这棵树的分数。

「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5

「样例输出」
8

「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms

题解

第一题:奖券数目

分析
暴力枚举
代码

bool isok(int n){
	while (n){
		if (n % 10 == 4){
			return false;
		}
		n /= 10;
	}
	return true;
}


int main(){
	int ans = 0;
	for (int i = 10000; i <= 99999; i++){
		if (isok(i))ans++;
	}
	cout << ans << endl;
	/*ans = 0;
	for (int a = 1; a <= 9; a++){
		if (a == 4)continue;
		for (int b = 0; b <= 9; b++){
			if (b == 4)continue;
			for (int c = 0; c <= 9; c++){
				if (c == 4)continue;
				for (int d = 0; d <= 9; d++){
					if (d == 4)continue;
					for (int e = 0; e <= 9; e++){
						if (e == 4)continue;
						ans++;
					}
				}
			}
		}
	}
	cout << ans << endl;*/

	system("pause");
	return 0;
}

ans :52488
第二题:星系炸弹

分析
蓝桥杯非常常见的日期题
注意一下平闰年的判断方法即可
代码

int main(){
	vector<int> ys{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
	int y = 2014, m = 11, d = 9;

	for (int i = 0; i < 1000; i++){
		if (((y % 4) == 0 && (y % 100) != 0) || (y%400)==0){
			ys[1] = 29;
		}
		else{
			ys[1] = 28;
		}
		d++;
		if (ys[m - 1]+1 == d){
			d = 1;
			m++;
			if (m == 13){
				m = 1;
				y++;
			}
		}

	}
	cout << y << " " << m << " " << d << endl;
	return 0;
}
ans :2017-08-05
第三题:三羊献瑞

分析
暴力枚举
代码

int main(){
	
	for (int a = 1; a < 10; a++){
		for (int b = 0; b < 10; b++){
			if (b == a)continue;
			for (int c = 0; c < 10; c++){
				if (c == b || c == a)continue;
				for (int d = 0; d < 10; d++){
					if (d == c || d == b || d == a)continue;

					for (int e = 0; e < 10; e++){
						if (e == c || e == b || e == a || e==d) continue;
						for (int f = 0; f < 10; f++){
							if (f == c || f == b || f == a || f == d || f==e) continue;
							for (int g = 0; g < 10; g++){
								if (g == c || g == b || g == a || g == d || g == e || g== f) continue;
								for (int h = 0; h < 10; h++){
									if (h == c || h == b || h == a || h == d || h == e || h == f || h==g) continue;
									if (a * 1000 + b * 100 + c * 10 + d + e * 1000 + d * 100 + f * 10 + g == a * 10000 + b * 1000 + f * 100 + d * 10 + h){
										cout << a << b << c << d << " + " << e << d << f << g << " = " << a << b << f << d << h << endl;
									}

								}
							}
						}
					}


				}
			}
		}
	}
	
	return 0;
}
ans :1085
第四题:格子中输出

分析
填空题
代码

#include <stdio.h>
#include <string.h>

void StringInGrid(int width, int height, const char* s)
{
	int i, k;
	char buf[1000];
	strcpy(buf, s);
	if (strlen(s)>width - 2) buf[width - 2] = 0;

	printf("+");
	for (i = 0; i<width - 2; i++) printf("-");
	printf("+\n");

	for (k = 1; k<(height - 1) / 2; k++){
		printf("|");
		for (i = 0; i<width - 2; i++) printf(" ");
		printf("|\n");
	}

	printf("|");

	printf("%*s%s%*s", (width-2-strlen(buf))/2,' ',buf,(width-2-strlen(buf))-(width-2-strlen(buf))/2,' ');  //填空

	printf("|\n");

	for (k = (height - 1) / 2 + 1; k<height - 1; k++){
		printf("|");
		for (i = 0; i<width - 2; i++) printf(" ");
		printf("|\n");
	}

	printf("+");
	for (i = 0; i<width - 2; i++) printf("-");
	printf("+\n");
}



int main(){
	StringInGrid(20, 6, "abcd1234");
	system("pause");
	return 0;
}
ans :(width-2-strlen(buf))/2,' ',buf,(width-2-strlen(buf))-(width-2-strlen(buf))/2,' '
第五题:九数组分数

分析
填空题
代码

#include <stdio.h>
#include<iostream>

void test(int x[])
{
	int a = x[0] * 1000 + x[1] * 100 + x[2] * 10 + x[3];
	int b = x[4] * 10000 + x[5] * 1000 + x[6] * 100 + x[7] * 10 + x[8];

	if (a * 3 == b) printf("%d / %d\n", a, b);
}

void f(int x[], int k)
{
	int i, t;
	if (k >= 9){
		test(x);
		return;
	}

	for (i = k; i<9; i++){
		{t = x[k]; x[k] = x[i]; x[i] = t; }
		f(x, k + 1);
		{t = x[k]; x[k] = x[i]; x[i] = t; }
		// 填空处
	}
}

int main()
{
	int x[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
	f(x, 0);
	system("pause");
	return 0;
}

ans : {t = x[k]; x[k] = x[i]; x[i] = t; }
第六题:加法变乘法

分析
题目告诉了总数和1225 ,还告诉了 乘号不能相邻, 也就是说 没有连续的乘法 这样的话我们可以用 1225 减去 乘号前后两个数的 和 再加上 两个数的积 ,所得即为改变符号后对原来的影响,遍历两个乘号的位置即可得到答案
代码

int main()
{
	for (int i = 1; i < 48; i++){
		for (int j = i + 2; j < 49; j++){
			if (1225 - (i + (i + 1)) + (i*(i + 1)) - (j + (j + 1)) + (j*(j + 1))==2015){
				cout << i << " " << j << endl;
			}

		}
	}
	return 0;
}
ans   16
第七题:牌型种数

分析
递归
dfs(n,j) n为当前牌的数量,i为当前牌型,一共有13种牌型,每种牌型有5种情况:一张都不拿,一张,两张,三张,四张。
代码


int ans = 0;

void dfs(int n, int i){
	if (n == 13){
		ans++;
		return;
	}
	if (i == 13)
		return;

	for (int j = 0; j <= 4; j++)
		dfs(n + j, i + 1);
}

int main()
{

	dfs(0, 0);
	cout << ans << endl;
	return 0;
}
ans  3598180
第八题:移动距离

分析
模拟
首先将小区号,转换成物理坐标,在计算其距离
代码

int main()
{

	int w, m, n;
	cin >> w >> m >> n;

	int mi, mj, ni, nj;
	mi = (m - 1) / w;
	ni = (n - 1) / w;

	mj = m%w == 0 ? w : m%w;
	if (mi % 2)
		mj = w - mj + 1;
	
	nj = n%w == 0 ? w : n%w;
	if (ni % 2)
		nj = w - nj + 1;

	cout << abs(mj - nj) + abs(mi - ni) << endl;

	return 0;
}
第九题:垒骰子

分析
矩阵快速幂
第一次见到这个 矩阵快速幂 它的原理与快速幂相似,区别在于他作用在矩阵上,用矩阵的目的在于容易建立转移方程。

这道题转移方程为:
在这里插入图片描述
结果为:
在这里插入图片描述
只看这些第一次接触到矩阵快速幂的,可能看不懂,感兴趣的了解一下矩阵快速幂原理

代码

#include<iostream>
#include<string> 

#define MOD 1000000007

using namespace std;
//op[i]为筛子 i点 的对立面点数 
int op[7] = {0, 4, 5, 6, 1, 2, 3};


//矩阵快速幂 

//矩阵
struct M {
    long long a[6][6];
    M() {
        for (int i = 0; i < 6; ++i) {
            for (int j = 0; j < 6; ++j) {
                a[i][j] = 1;
            }
        }
    }
    M(int n){
    	for (int i = 0; i < 6; ++i) {
            for (int j = 0; j < 6; ++j) {
                a[i][j] = n;
            }
        }
    } 
};

//矩阵相乘 
M mMultiply(M m1, M m2) {
    M ans;
    for (int i = 0; i < 6; ++i) {
        for (int j = 0; j < 6; ++j) {
            ans.a[i][j] = 0;
            for (int k = 0; k < 6; ++k) {
                ans.a[i][j] = (ans.a[i][j] + m1.a[i][k] * m2.a[k][j]) % MOD;
            }
        }
    }
    return ans;
}

//矩阵快速幂 
M mPow(M m, int k) {
    M ans;//单位矩阵
    
    for (int i = 0; i < 6; ++i) {
        for (int j = 0; j < 6; ++j) {
            if (i == j)
                ans.a[i][j] = 1;
            else
                ans.a[i][j] = 0;
        }
    }
    while (k != 0) {
        if ((k & 1) == 1) {
            ans = mMultiply(ans, m);
        }
        m = mMultiply(m, m);
        k >>= 1;//向右移1位
    }
    return ans;
}

int main() {
    int n, m;
    cin >> n >> m;
    M cMatrix(4);//冲突矩阵
    for (int i = 0; i < m; ++i) {
        int a, b;
        cin >> a >> b;
		//完善冲突矩阵
        cMatrix.a[op[a] - 1][b - 1] = 0;
        cMatrix.a[op[b] - 1][a - 1] = 0;
    }
    M cMatrix_n_1 = mPow(cMatrix, n - 1);//冲突矩阵的n-1次方
    long long ans = 0;
    for (int j = 0; j < 6; ++j) {
        for (int i = 0; i < 6; ++i) {
            ans = (ans + cMatrix_n_1.a[i][j]) % MOD;
        }
    }

	//
  	cout<<(ans * 4) % MOD<<endl;
    return 0;
}

第十题:生命之树

分析
dfs+dp
以每个节点为根,求其最大评分,遍历的同时保存已经求出的根节点评分。

#include<iostream>


using namespace std;

const int MAXN = 1e5;
long long w[MAXN + 1];//每个点权重
long long v[MAXN + 1];//每个点作为根节点时得到的最大圈和



long long ans;
vector<vector<int>> g(MAXN + 1);//邻接表 
using namespace std;

//fa 为父节点
void dfs(int root, int fa){
	v[root] = w[root];
	//遍历每个孩子
	for (int i = 0; i<g[root].size(); ++i){
		int son = g[root][i];
		//与父结点不同,防止死循环,因为树中不存在环,所以这种方式就可以避免死循环
		if (son != fa){
			dfs(son, root);
			if (v[son]>0){
				v[root] += v[son];
			}
		}
	}
	//更新ans
	ans = max(ans, v[root]);
}
int main(){
	int n;
	cin >> n;
	for (int i = 1; i <= n; i++){
		cin >> w[i];
	}
	ans = w[1];
	for (int j = 1; j <= n - 1; j++){
		int a, b;
		cin >> a >> b;
		g[a].push_back(b);
		g[b].push_back(a);
	}
	ans = w[1];
	dfs(1, 0);
	cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值