- 博客(14)
- 收藏
- 关注
翻译 langchain4j-14 (Embedding (Vector) Stores 嵌入(向量)存储)
所有受支持的嵌入存储都可以在这里找到。有关嵌入存储的文档可以在这里找到。
2025-04-23 16:06:40
52
翻译 langchain4j-13 (Classification 分类)
本文档提供了使用 Java 语言 LangChain4j 实现的分类系统。分类对于将文本归类到预定义的标签中至关重要,例如情感分析、意图检测和实体识别。此示例演示了如何使用 LangChain4j 的 AI 服务进行情绪分类。
2025-04-23 15:56:39
39
翻译 langchain4j-12 (Structured Outputs 结构化输出)
使用提示时(这是默认选择,除非启用对 JSON 模式的支持),AI 服务将自动生成格式说明并将其附加到 UserMessage 的末尾 指示响应的格式。请注意,如果 LLM 没有为原始类型(例如 int 、 boolean 等)的可选字段提供值,则将使用默认值进行初始化(例如, int 为 0 , boolean 为 false 等)。请注意,JSON 架构是在对提供商 API 的请求中的专用属性中指定的,并且不需要在提示中包含任何自由格式的指令(例如,在系统或用户消息中)。
2025-04-23 15:47:03
61
翻译 langchain4j-11 (RAG (检索增强生成))
简单来说,RAG 是通过在发送到LLM之前,从你的数据中找到并注入相关信息的片段到提示中。这样LLM就能获得(希望是)相关信息,并能够使用这些信息进行回复,这应该会降低幻觉发生的概率。相关信息可以通过各种信息检索方法找到。全文(关键词)搜索。这种方法使用 TF-IDF 和 BM25 等技术,通过将查询中的关键词(例如用户提出的问题)与文档数据库进行匹配来搜索文档。它根据这些关键词在每个文档中的频率和相关性对结果进行排序。向量搜索,也称为“语义搜索”。使用嵌入模型将文本文档转换为数字向量。
2025-04-22 17:35:39
101
翻译 langchain4j-10 (Tools (工具函数))
低级,使用 ChatLanguageModel 和 ToolSpecification API高级,使用 AI 服务和 @Tool -注解的 Java 方法。
2025-04-15 11:31:30
125
翻译 langchain4j-9 (Agents 智能体)
然而,您仍然可以通过使用低级的 ChatLanguageModel、ToolSpecification 和 ChatMemory API 来构建多智能体系统。如果您需要更多灵活性,可以使用低级的 ChatLanguageModel、ToolSpecification 和 ChatMemory API。LangChain4j 不支持像 AutoGen 或 CrewAI 中的“agent”这样的高级抽象来构建多智能体系统。大多数基本的“智能”功能都可以使用高级 AI 服务和工具 API 构建。
2025-04-14 17:52:00
28
翻译 langchain4j-8 (AI Services AI服务)
此外,通常不需要 state/memory,因此与 的LLM每次交互都是独立于其他交互的。例如,当用户简单地向聊天机器人打招呼或说再见时,提供LLM数十或数百个工具的访问权限是昂贵的,有时甚至是危险的(LLM 通话中包含的每个工具都会消耗大量令牌),并且可能导致意外结果(LLMs 可能会产生幻觉或纵以调用具有意外输入的工具)。关于 RAG:同样,有时需要为 LLM 提供一些上下文,但并非总是如此,因为它会产生额外的成本(更多的上下文 = 更多的令牌)并增加响应时间(更多的上下文 = 更高的延迟)。
2025-04-14 17:42:31
127
翻译 langchain4j-7 (Response Streaming 响应流)
流式传输响应的一种更紧凑的方法是使用 LambdaStreamingResponseHandler class。对于 ChatLanguageModel 和 LanguageModel 接口,有相应的 StreamingChatLanguageModel 和 StreamingLanguageModel 接口。LLMs一次生成一个令牌的文本,因此许多LLM提供商提供了一种逐个令牌流式传输响应的方法,而不是等待生成整个文本。这显著改善了用户体验,因为用户不需要等待未知的时间,几乎可以立即开始读取响应。
2025-04-14 09:43:37
56
翻译 langchain4-6 (Model Parameters 模型参数)
在此控制面板中,您可以进行更改,这些更改将立即反映在正在运行的实例中,并且您的更改会自动移植到代码中。可以找到支持的属性的完整列表 这里 https://github.com/langchain4j/langchain4j-spring/blob/main/langchain4j-open-ai-spring-boot-starter/src/main/java/dev/langchain4j/openai/spring/AutoConfig.java。
2025-04-14 09:24:06
50
翻译 LangChain4j-4
在最简单的场景中,我们可以在 chat 方法中提供 UserMessage 的单个实例。ChatResponseMetadata 包含 TokenUsage,它包含有关输入(您提供给 generate 方法的所有 ChatMessages)包含的令牌数、作为输出生成的令牌数(在 AiMessage 中)以及总数(输入 + 输出)的统计信息。下一节将提供有关聊天消息的更多详细信息。如你所见,在 chat 方法的第二次调用中,我们不仅提供了单个 secondUserMessage,还提供了对话中的前一条消息。
2025-04-12 18:08:25
81
翻译 LangChain4j-2
LangChain4j 在 community repo 中维护了一些集成。它们支持与主存储库中的集成相同的功能。它们之间的唯一区别是 community 与主仓库具有不同的 artifact 和 package name(即 artifact 和 package name 中的 community 前缀)。创建社区是为了分离一些集成的维护,从而更容易维护主存储库。Quarkus extension Quarkus 扩展。In-process embeddings 进程内嵌入。
2025-04-12 17:40:44
21
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人