
AIoT(人工智能+物联网)
文章平均质量分 92
本专栏记录学习AIoT的学习路径,包括知识总结以及项目实战,欢迎大家关注本专栏
辰chen
上海科技大学计算机科学与技术专业学硕
展开
-
AIoT(人工智能+物联网)知识总结+实战项目
本文算是本人AIoT(人工智能+物联网) 学习的过程总结,相关笔记均会在此博客给出相关链接;适合学习人群:0基础小白,以及有一定编程基础的同学~,本文理论+实战并存,通过真实企业级项目讲述AIoT,本文将持续更新,希望你我均能沉下心去认真学习AIoT的相关内容,共同进步!原创 2021-11-30 21:41:33 · 40575 阅读 · 73 评论 -
复试 || 就业day05(2024.01.08)项目一
💫你好,我是辰chen,本文旨在准备考研复试或就业💫本文内容来自某机构网课,是我为复试准备的第一个项目💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:💥ACM-ICPC算法汇总【基础篇】💥ACM-ICPC算法汇总【提高篇】💥AIoT(人工智能+物联网)💥考研💥。原创 2024-01-08 22:29:01 · 1197 阅读 · 0 评论 -
复试 || 就业day04(2024.01.05)项目一
💫你好,我是辰chen,本文旨在准备考研复试或就业💫本文内容来自某机构网课,是我为复试准备的第一个项目💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:💥ACM-ICPC算法汇总【基础篇】💥ACM-ICPC算法汇总【提高篇】💥AIoT(人工智能+物联网)💥考研💥。原创 2024-01-05 22:06:05 · 874 阅读 · 0 评论 -
复试 || 就业day03(2024.01.03)项目一
💫你好,我是辰chen,本文旨在准备考研复试或就业💫本文内容来自某机构网课,是我为复试准备的第一个项目💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:💥ACM-ICPC算法汇总【基础篇】💥ACM-ICPC算法汇总【提高篇】💥AIoT(人工智能+物联网)💥考研💥。原创 2024-01-03 19:37:00 · 549 阅读 · 0 评论 -
复试 || 就业day02(2024.01.02)项目一
💫你好,我是辰chen,本文旨在准备考研复试或就业💫本文内容来自某机构网课,是我为复试准备的第一个项目💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:💥ACM-ICPC算法汇总【基础篇】💥ACM-ICPC算法汇总【提高篇】💥AIoT(人工智能+物联网)💥考研💥。原创 2024-01-02 22:34:26 · 1096 阅读 · 0 评论 -
复试 || 就业day01(2023.12.29)项目一
💫你好,我是辰chen,本文旨在准备考研复试或就业💫本文内容来自某机构网课,是我为复试准备的第一个项目💫欢迎大家的关注,我的博客主要关注于考研408以及AIoT的内容🌟 预置知识详见我的AIoT板块,需掌握 基本Python语法, Numpy, Pandas, Matplotlib以下的几个专栏是本人比较满意的专栏(大部分专栏仍在持续更新),欢迎大家的关注:💥ACM-ICPC算法汇总【基础篇】💥ACM-ICPC算法汇总【提高篇】💥AIoT(人工智能+物联网)💥考研💥。原创 2023-12-29 23:42:46 · 1213 阅读 · 0 评论 -
线性回归算法【AIoT阶段三】
【AIoT阶段三】线性回归算法AIoT(人工智能+物联网)知识总结+实战项目,先来简单介绍通过本文,你可以学到什么:1️⃣线性回归的基本概念以及正规方程2️⃣线性回归算法推导与实战3️⃣线性回归实战【房价预测】4️⃣梯度下降【无约束最优化问题】5️⃣三种梯度下降方法与代码实现6️⃣梯度下降优化。原创 2022-10-07 21:10:02 · 2347 阅读 · 1 评论 -
梯度下降优化
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPyNumPyNumPy,PandasPandasPandas,MatplotlibMatplotlibMatplotlib 的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解),本文是梯度下降的第三部分,学之前需先修:梯度下降【无约束最优化问题】,三种梯度下降方法与代码实现原创 2022-10-05 14:40:19 · 829 阅读 · 0 评论 -
独热(One-Hot)编码简述
独热编码即 One-Hot 编码,又称一位有效编码。其方法是使用 N 位状态寄存器来对 N 个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。............原创 2022-06-02 20:03:35 · 12039 阅读 · 5 评论 -
程序员的数学【AIoT阶段二】
不论你是一位刚入程序员门槛的大学生,亦或者是想系统学习程序员数学,这篇文章绝对可以满足你的需求,本篇博客涉及所有程序员数学的必备知识,是 【AIoT阶段二】的内容:算法数学基础,关于所有AIoT的详细介绍,详见博客:AIoT(人工智能+物联网)知识总结+实战项目,先来简单介绍通过本文,你可以学到什么:微积分基础,线性代数基础,多元函数微分学,线性代数高级,概率论,最优化。本篇博客和Python的进阶之道【AIoT阶段一】不同,以上的这些数学知识我们以后将频繁的使用,建议大家对全文进行掌握,如果大家对于哪部分原创 2022-03-29 10:15:35 · 9630 阅读 · 0 评论 -
程序员的数学【最优化】
本文其实值属于:程序员的数学【AIoT阶段二】 (尚未更新)的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 最优化,本文涵盖了一些计算的问题并使用代码进行了实现,安装代码运行环境见博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),如果你只是想要简单的了解有关线代的内容,那么只需要学习一下博文:NumPy从入门到高级,如果你是跟着博主学习 AIoTAIoTAIoT 的小伙伴,建议先看博文:数据分析三剑客【AIoT阶段一(下)】(十万字博原创 2022-03-28 22:05:29 · 13950 阅读 · 0 评论 -
程序员的数学【概率论】
本文其实值属于:程序员的数学【AIoT阶段二】 (尚未更新)的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 概率论,本文涵盖了一些计算的问题并使用代码进行了实现,安装代码运行环境见博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),如果你只是想要简单的了解有关线代的内容,那么只需要学习一下博文:NumPy从入门到高级,如果你是跟着博主学习 AIoTAIoTAIoT 的小伙伴,建议先看博文:数据分析三剑客【AIoT阶段一(下)】(十万字博原创 2022-03-26 14:48:18 · 7548 阅读 · 1 评论 -
程序员的数学【多元函数微分学】
本文其实值属于:程序员的数学【AIoT阶段二】 (尚未更新)的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 多元函数微分学,读之前建议先看:程序员的数学【微积分基础】,本文涵盖了一些计算的问题并使用代码进行了实现,安装代码运行环境见博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),如果你只是想要简单的了解有关线代的内容,那么只需要学习一下博文:NumPy从入门到高级,如果你是跟着博主学习 AIoTAIoT 的小伙伴,建议先看博文:数据原创 2022-03-25 22:42:16 · 6536 阅读 · 1 评论 -
程序员的数学【线性代数高级】
本文其实值属于:程序员的数学【AIoT阶段二】 (尚未更新)的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数高级,读之前建议先看:程序员的数学【线性代数基础】,本文涵盖了一些计算的问题并使用代码进行了实现,安装代码运行环境见博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),如果你只是想要简单的了解有关线代的内容,那么只需要学习一下博文:NumPy从入门到高级,如果你是跟着博主学习 AIoT 的小伙伴,建议先看博文:数据分析三剑原创 2022-03-24 14:12:31 · 10221 阅读 · 2 评论 -
三种梯度下降方法与代码实现
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPyNumPy,PandasPandas,MatplotlibMatplotlib 的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解),本文是梯度下降的第二部分,学之前需先修:梯度下降【无约束最优化问题】,后续还会有:梯度下降优化,梯度下降优化进阶 (暂未更新)原创 2022-02-14 21:35:58 · 1828 阅读 · 0 评论 -
梯度下降【无约束最优化问题】
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPyNumPy,PandasPandas,MatplotlibMatplotlib 的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)原创 2022-02-12 15:48:15 · 5511 阅读 · 0 评论 -
线性回归实战【房价预测】
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPyNumPy,PandasPandas,MatplotlibMatplotlib 的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)原创 2022-02-12 02:05:11 · 6868 阅读 · 9 评论 -
线性回归算法推导与实战
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有 NumPy,Pandas,Matplotlib的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)回归简单来说就是 “回归平均值” (regression to the mean。但是这里的 mean 并不是把 历史数据直接当成未来的预测值,而是会把期望值当作预测值。 追根溯源 回归 这个原创 2022-02-11 21:42:12 · 3499 阅读 · 0 评论 -
线性回归的基本概念以及正规方程
本文属于线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,线性回归是机器学习中有监督机器学习下的一种算法。 回归问题主要关注的是因变量(需要预测的值,可以是一个也可以是多个)和一个或多个数值型的自变量(预测变量)之间的关系。需要预测的值:即目标变量,target,y,连续值预测变量。影响目标变量的因素:X 1 …X n,可以是连续值也可以是离散值。因变量和自变量之间的关系:即模型,model,是我们要求解的。基本概念:连续值、离散值、简单线性回归、基本名词定义、多元线性回归;正规方程原创 2022-02-09 13:30:36 · 5095 阅读 · 1 评论 -
程序员的数学【线性代数基础】
本文其实值属于:程序员的数学【AIoT阶段二】 (尚未更新)的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 线性代数基础,在机器学习中经常会有矩阵、向量的定义以及计算,是公式定义、推导中必不可少的一部分内容,很多基础概念的定义中都用到了向量的概念,有关线性代数,后续还会发一篇博文:程序员的数学【线性代数高级】,本文涵盖了一些计算的问题并使用代码进行了实现,安装代码运行环境见博客:最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文),如果你只是想原创 2022-02-08 11:25:06 · 10973 阅读 · 1 评论 -
程序员的数学【微积分基础】
本文其实值属于:程序员的数学【AIoT阶段二】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍微积分基础,微积分是公式推导的基础,如果你也关注我的专栏:西瓜书读书笔记,里面对公式进行详细推导的过程中,运用到了大量的 导数,积分,身为一名程序员,我们务必掌握一些必备的数学知识。导数可以说是微积分的敲门砖,如果你大一的高数内容已经学完,这一节来说对你就是小儿科,本节将假设你不会导数,没有学过高数这门课,保证大家可以看懂.导数,也为叫导函数值。又名微商,是微积分中的重要基础概念,导数可以理解为原创 2022-01-30 02:49:55 · 7763 阅读 · 8 评论 -
数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)
你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlibnumpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,关于AIoT的详细介绍,详见博客:AIoT(人工智能+物联网)知识总结+实战项目,如果你没有 Python 基础,建议先修:Python的进阶之道【AIoT阶段一(上)】(十五万字博文 保姆级讲解)原创 2022-01-26 02:00:44 · 3349 阅读 · 2 评论 -
Matplotlib数据可视化从入门到进阶
在数据分析与机器学习中,我们经常要用到大量的可视化操作。一张制作精美的数据图片,可以展示大量的信息,一图顶千言。而在可视化中,Matplotlib算得上是最常用的工具。Matplotlib 是 python 最著名的绘图库,它提供了一整套 API,十分适合绘制图表,或修改图表的一些属性,如字体、标签、范围等。Matplotlib 是一个 Python 的 2D 绘图库,它交互式环境生成出版质量级别的图形。通过 Matplotlib这个标准类库,开发者只需要几行代码就可以实现生成绘图,折线图、散点图、柱状图、原创 2022-01-25 18:56:22 · 6540 阅读 · 0 评论 -
Matplotlib数据可视化进阶
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍Matplotlib数据可视化进阶,读本文之前,如果没有 Matplotlib基础建议先看博客:Matplotlib数据可视化入门,Matplotlib数据可视化高级。学习本文之前,需要先自修:NumPy从入门到进阶,pandas从入门到进阶,本文中很多的操作在 NumPy从入门到进阶 ,pandas从入门到进阶二文中有详细的介绍,包含一些软件以及扩展库,图片的安装和下载流程,本文会直接原创 2022-01-25 16:42:53 · 4539 阅读 · 2 评论 -
Seaborn数据可视化
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视 为matplotlib的补充,而不是替代物。原创 2022-01-25 15:56:25 · 5074 阅读 · 0 评论 -
Matplotlib数据可视化高级
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍Matplotlib数据可视化高级,读本文之前,如果没有 Matplotlib基础建议先看博客:Matplotlib数据可视化入门,后续还会单独发一篇Matplotlib数据可视化进阶内容供读者学习。学习本文之前,需要先自修:NumPy从入门到进阶,pandas从入门到进阶本文中很多的操作在 NumPy从入门到进阶,pandas从入门到进阶二文中有详细的介绍,包含一些软件以及扩展库,图原创 2022-01-23 23:32:19 · 4118 阅读 · 5 评论 -
Matplotlib数据可视化入门
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 Matplotlib数据可视化,后续还会单独发一篇Matplotlib数据可视化高级以及Matplotlib数据可视化进阶内容供读者学习。在数据分析与机器学习中,我们经常要用到大量的可视化操作。一张制作精美的数据图片,可以展示大量的信息,一图顶千言。而在可视化中,Matplotlib算得上是最常用的工具。Matplotlib 是 python 最著名的绘图库,它提供了一整套 API,十原创 2022-01-23 03:38:05 · 1564 阅读 · 0 评论 -
pandas从入门到进阶
Python在数据处理和准备方面一直做得很好,但在数据分析和建模方面就差一些。pandas帮助填补了这一空白,使您能够在Python中执行整个数据分析工作流程,而不必切换到更特定于领域的语言,如R。与出色的 jupyter工具包和其他库相结合,Python中用于进行数据分析的环境在性能、生产率和协作能力方面都是卓越的。pandas是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进行数据分析的必备高级工具。pandas原创 2022-01-22 01:55:35 · 3571 阅读 · 0 评论 -
pandas 进阶
目录前言1.数据重塑1.1 一般数据1.2 多层索引前言本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 高级,读本文之前建议先修:pandas 入门,pandas 高级1.数据重塑数据重塑其实就是行变列,列变行1.1 一般数据import numpy as npimport pandas as pddf = pd.DataFrame(data = np.random.randint(0, 10原创 2022-01-22 01:45:03 · 6127 阅读 · 1 评论 -
pandas 高级
目录前言1.数据集成1.1 concat数据串联1.2 插入1.3 Join SQL风格合并2.数据清洗2.1 重复数据过滤2.2 空数据过滤2.3 指定行或者列进行删除2.4 异常值3.数据转换前言本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 高级,读本文之前建议先修:pandas 入门,后续还会发出一篇 pandas 进阶供读者进行进一步的学习了解。原创 2022-01-20 20:18:40 · 2780 阅读 · 1 评论 -
pandas 入门
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 pandas 入门,后续还会单独发一篇 pandas 高级以及 pandas 进阶内容供读者学习。Python在数据处理和准备方面一直做得很好,但在数据分析和建模方面就差一些。pandas帮助填补了这一空白,使您能够在Python中执行整个数据分析工作流程,而不必切换到更特定于领域的语言,如R。与出色的 jupyter工具包和其他库相结合,Python中用于进行数据分析的环境在性能、生原创 2022-01-18 22:49:54 · 3133 阅读 · 3 评论 -
matplotlib的安装教程以及简单调用
1.matplotlib 的下载我们的常规下载方式就是在命令行中输入:`pip install matplotlib`,这样你就可以从官方进行下载,但是这样的下载速度是十分的慢的,我们在 最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文)(https://chen-ac.blog.csdn.net/article/details/122374025?spm=1001.2014.3001.5502)这一博客中曾写到,可以在`pip install matplo原创 2022-01-17 22:47:31 · 14464 阅读 · 1 评论 -
NumPy从入门到高级
五、科学计算模板 Numpy1.Numpy 入门NumPy(Numerical Python)是Python的一种开源的数值计算扩展。提供多维数组对象,各种派生对象(如掩码数组和矩阵),这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统原创 2022-01-15 10:34:45 · 5997 阅读 · 0 评论 -
Numpy 高级
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 NumPy 高级,学习之前需要学习:NumPy入门,关于NumPy和jupyter的安装在 NumPy入门一文中也有想详细的介绍原创 2022-01-15 01:19:13 · 3667 阅读 · 4 评论 -
Python的进阶之道【AIoT阶段一(上)】(十五万字博文 保姆级讲解)
本篇博客是 [AIoT阶段一] 的内容:Python 语法基础,关于所有的AIoT的详细介绍,详见博客:AIoT(人工智能+物联网)知识总结+实战项目。本文与网上教程以及其他关于Python的博文区别有如下几点:新,可以说是至2022/1/14最新的Python相关博文(使用 Python 3.10);配图详细,所有的配图均是博主一步一步实践过程中的配图,配图中需要强调的地方用红圈圈出;结构条理清晰 (这里吐槽一下我们学校Python的教材,很多后面章节才学的东西在很前面的章节就很频繁的使用,自学起来原创 2022-01-14 01:17:58 · 3115 阅读 · 0 评论 -
NumPy入门
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文介绍 NumPy入门,后续还会单独发一篇 NumPy高级内容供读者学习。原创 2022-01-12 14:50:31 · 5795 阅读 · 1 评论 -
最详细的Anaconda Installers 的安装【numpy,jupyter】(图+文)
本文其实属于:Python的进阶之道【AIoT阶段一】的一部分内容,本篇把这部分内容单独截取出来,方便大家的观看,本文配图全且详细,读者只需和我的图片和描述一样操作即可,整体过程也十分简单,总用时不会超过 20min(其中下载相关文件占大部分时间)原创 2022-01-07 23:08:50 · 6069 阅读 · 1 评论 -
学生管理系统【Python】
本文从1、需求分析 2、系统设计 3、系统开发必备 4、主函数设计 5、学生信息维护模块设计 6、查询/统计模块设计 7、排序模块设计 8、项目打包 9、总结和完整代码 九个方面去分步讲解如何用 Python 实现 学生管理系统。原创 2022-01-04 09:11:56 · 1857 阅读 · 0 评论 -
最新最详细的Python开发环境搭建以及PyCharm的安装配置教程【图+文】
本文为长文:Python进阶之道【阶段一】的第一章,截取本章单独发布是因为帮助更多读者进行专项的需求,本文采用 图 + 文 的形式,配图众多,每步都很详细,且下载为最新 Python 3.10 ,和最新的 PyCharm,安装 PyCharm 分为付费版和免费版的安装演示。原创 2021-12-29 16:01:48 · 5544 阅读 · 2 评论