numpy是python语言的一个扩展程序库,支持大量的多维度数组和矩阵运算,在数据处理中有非常重要的地位。
numpy最重要的一个特点就是其N维数组对象ndarray,它是用来存储单一数据类型的多维数组。
创建数组
import numpy as np
L1 = np.array([1,2,3]) #一维
L2 = np.array([[1,2,3],[4,5,6]]) #二维
print(L1)
print(L2)
输出结果
[1 2 3]
[[1 2 3]
[4 5 6]]
另外,它还可以项matlab那样创建
import numpy as np
L1 = np.eye(3) #对角线元素为1
L2 = np.ones((3,2)) #全部元素为1
L3 = np.zeros((4,3)) #全部元素为0
L4 = np.arange(0,10,2) #起始、结束、步长
L5 = np.linspace(0,1,5) #起点、终点、元素个数
print(L1)
print(L2)
print(L3)
print(L4)
print(L5)
输出结果
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
[[1. 1.]
[1. 1.]
[1. 1.]]
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
[0 2 4 6 8]
[0. 0.25 0.5 0.75 1. ]
一维数据的索引
import numpy as np
L = np.arange(10)
print(L)
print(L[3])
print(L[2:6]) #不包含端点
print(L[::2])
输出结果
[0 1 2 3 4 5 6 7 8 9]
3
[2 3 4 5]
[0 2 4 6 8]
可以看出与列表相似
改变数据维度
import numpy as np
L = np.arange(10)
L = L.reshape(2,5)
print(L)
L = L.ravel()
print(L)
输出结果
[[0 1 2 3 4]
[5 6 7 8 9]]
[0 1 2 3 4 5 6 7 8 9]