numpy|python

numpy是python语言的一个扩展程序库,支持大量的多维度数组和矩阵运算,在数据处理中有非常重要的地位。

numpy最重要的一个特点就是其N维数组对象ndarray,它是用来存储单一数据类型的多维数组。

创建数组

import numpy as np
L1 = np.array([1,2,3]) #一维
L2 = np.array([[1,2,3],[4,5,6]]) #二维
print(L1)
print(L2)

输出结果

[1 2 3]
[[1 2 3]
 [4 5 6]]

另外,它还可以项matlab那样创建


import numpy as np
L1 = np.eye(3) #对角线元素为1
L2 = np.ones((3,2))  #全部元素为1
L3 = np.zeros((4,3))   #全部元素为0
L4 = np.arange(0,10,2)  #起始、结束、步长
L5 = np.linspace(0,1,5)   #起点、终点、元素个数
print(L1)
print(L2)
print(L3)
print(L4)
print(L5)

输出结果

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
[[1. 1.]
 [1. 1.]
 [1. 1.]]
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
[0 2 4 6 8]
[0.   0.25 0.5  0.75 1.  ]

一维数据的索引

import numpy as np
L = np.arange(10)
print(L)
print(L[3])
print(L[2:6]) #不包含端点
print(L[::2])

输出结果

[0 1 2 3 4 5 6 7 8 9]
3
[2 3 4 5]
[0 2 4 6 8]

可以看出与列表相似

改变数据维度

import numpy as np
L = np.arange(10)
L = L.reshape(2,5)
print(L)

L = L.ravel()
print(L)

输出结果

[[0 1 2 3 4]
 [5 6 7 8 9]]
[0 1 2 3 4 5 6 7 8 9]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值