B-最小硬币问题
1.多重背包版
描述:
设有n种不同面值的硬币,各硬币的面值存于数组T[1:n]中。现要用这些面值的硬币来找钱。可以使用的各种面值的硬币个数存于数组Coins[1:n]中。
对任意钱数0≤m≤20001,设计一个用最少硬币找钱m的方法。
对于给定的1≤n≤10,硬币面值数组T和可以使用的各种面值的硬币个数数组Coins,以及钱数m,0≤m≤20001,计算找钱m的最少硬币数。
输入:
输入数据第一行中只有1个整数给出n的值,第2行起每行2个数,分别是T[j]和Coins[j]。最后1行是要找的钱数m。
输出:
输出数据只有一个整数,表示计算出的最少硬币数。问题无解时输出-1。
样例:
输入:
3
1 3
2 3
5 3
18
输出:
5
dp思路:
dp数组含义: dp[j]表示在找零钱数为j元时的最小硬币数量
第一步:首先假设我们持有1,3,5三种不同面值的硬币(数量先不讨论)。
第二步:对于0元钱找零,很显然我们不需要使用任何硬币,因此dp[0]=0
第三步:对于1元钱找零,我们只需要使用一枚1元硬币因此dp[1]=1
第四步:对于2元钱找零,我们可以在第三步的基础上再使用一枚1元硬币,此时dp[2]=dp[1]+1=2。
第五步:对于3元钱找零,我们可以在第四步的基础上再使用1枚1元硬币,此时dp[3]=dp[2]+1=3,我们还可以选择直接使用1枚3元硬币找零,此时dp[3]=1。因为是最小硬币,我们取1
第六步:经过推导我们可以发现,对于n元钱找零,我们往往是建立在j元钱找零的情况下再选择一枚合适的硬币dp[n]=dp[j]+1(j<n)。也就是说,我们想要对n元钱找零就是在找零j元的基础上再加上某一硬币即可,具体使用面值为几的硬币则需要一个个尝试。
dp[n]=dp[j]+1=dp[n-1]+1 || dp[n-3]+1 || dp[n-5]+1
第七步:我们将具体例子放大到题目
dp[n]=min(dp[n],dp[n-t[i]]+1) ; t[i]即对应着所有不同面值的硬币
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
int t[105],c[105];
int dp[20010];
int main()
{
int n;
cin>>n;
for(int i =0; i<n; i++)
cin>>t[i]>>c[i];
int p;
cin>>p;
memset(dp,inf,sizeof(dp));//初始化为无穷大
dp[0] =0;//0元找零的情况需要标注
for(int i = 0; i<n; i++) //使用前i种硬币
for(int j = 1; j <= c[i]; j++)//第i种硬币选择几张
for(int k = p; k >= t[i]; k--)//找零k元
{
dp[k]=min(dp[k],dp[k-t[i]]+1);
}
if(dp[p] >= inf)dp[p] =-1;
cout<<dp[p]<<endl;
}
其实对于多重背包问题,我们往往最经典的是采用将其转换成01背包问题,或者01背包+完全背包问题(这里就不在赘述)下面是转换成01+完全背包的解法示例
#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
const int inf = 0x3f3f3f;
int t[105],c[105];
int dp[200010];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>t[i]>>c[i];
}
int m;
cin>>m;
for(int i=1;i<=m;i++){dp[i]=inf;}//注意不要用memset和fill初始化,不能AC
dp[0]=0;
for(int i=1;i<=n;i++){
if(t[i]*c[i]>=m){//此时属于完全背包问题
for(int j=t[i];j<=m;j++){
dp[j]=min(dp[j],dp[j-t[i]]+1);
}
}
else{//归为01背包问题
for(int j=m;j>=t[i];j--){
for(int k=1;k<=c[i];k++){
if(j>=k*t[i])
dp[j]=min(dp[j],dp[j-k*t[i]]+k);
}
}
}
}
if(dp[m]==inf){
cout<<"-1"<<endl;
}
else{
cout<<dp[m]<<endl;
}
return 0;
}
2.完全背包版
不同于多重背包,完全背包的硬币数量是无限的。要解决完全背包,我们先回顾一下01背包的递推式推导
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
于其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
于是可以得到递推式dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
在讲述完一维dp的递推之后,有一个很重要是事情便是遍历顺序,我们都知道在01背包的一维dp的遍历顺序中,物品的重量是要逆序遍历的,那么为什么要逆序的,正是因为如果正序遍历,后面的dp数组更新所需的前面dp数组的值是已经更新之后的,也就是存在一个物品被多次放入的情况。到这里,完全背包的思路也很显然了,无非就是更改一下物品重量的遍历顺序罢了。
将完全背包的解题思路应用到最小硬币问题中便是将找零的钱数从1开始正序遍历到p;递推式也很容易推导。对于t[i]元面值的硬币我们有取和不取两种办法,分别对应着dp[j](不取),以及dp[j-t[i]]+1(对应着取)
dp[j]=min(dp[j],dp[j-t[i]]+1);
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
int t[12];//面值
int dp[20010];
int main()
{
int n;
cin>>n;
for(int i =0; i<n; i++)
cin>>t[i];
int p;
cin>>p;
memset(dp,inf,sizeof(dp));//顺序1
dp[0] =0;//顺序2
for(int i=0;i<n;i++){
for(int j=t[i];j<=p;j++){
dp[j]=min(dp[j],dp[j-t[i]]+1);
}
}
if(dp[p] >= inf)dp[p] =-1;
cout<<dp[p]<<endl;
}
jk2002gyh