算法学习笔记——最近公共祖先(LCA)模板

模板题地址:https://www.luogu.com.cn/problem/P3379

定义:

最近公共祖先简称 LCA(Lowest Common Ancestor)。两个节点的最近公共祖先,就是这两个点的公共祖先里面,离根最远的那个,指的是离两个点最近的公共祖先节点。 (OI-wiki)

求法:

一、暴力求法:

每次将u、v中深度较大的节点向上跳到其父节点,因为两个节点都存在于同一颗树上,因此两个点必然会相遇,那么这个相遇的节点就会是两个点的最近公共祖先(LCA)

对于这种做法,最坏的情况就是需要dfs搜索整棵树,因此,每次询问一次的复杂度最坏会达到 O ( n ) O(n) O(n);因为树结构的随机性,因此询问的平均复杂度为 O ( l o g n ) O(logn) O(logn),总体复杂度较高

二、倍增求法:

倍增求法属于是LCA求法中比较常用的一种求法,属于是暴力求法的优化,是一种可以在线求LCA的求法。通过预处理,可以快速每个节点的第 2 k 2^k 2k 个祖先节点,从而缩短往上跳的时间,更快求出LCA。

在预处理中,我们用 f a [ i ] [ k ] fa[i][k] fa[i][k] 来记录 i i i 节点的第 2 k 2^k 2k 个祖先,那么我们可以通过dfs,并通过 f a [ i ] [ k ] = f a [ f a [ i ] [ k − 1 ] ] [ k − 1 ] fa[i][k]=fa[ fa[i][k-1] ][k-1] fa[i][k]=fa[fa[i][k1]][k1] 来对祖先进行计算,预处理复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

而对于LCA的计算,先快速将两个节点提到同一层,再两边同时不断向上找父节点,直到找到LCA,查询复杂度为 O ( l o g n ) O(logn) O(logn)

放上代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const int N=5e5+5;
struct qxx{
    int f,v;
}q[2*N];
int n,m,s;
int dep[N],fa[N][22],lg[N];
//dep(深度)存每个数的层数,fa存每个点的2^i个祖先
//lg用来计算第2^k个父节点的k 
int zs,head[N];
void cun(int x,int y) //链式前向星存树 
{
    q[++zs].v=y; 
    q[zs].f=head[x];
    head[x]=zs;
}

void dfs(int s,int fs) //深搜层数 、父节点,fs为父节点数 
{
    dep[s]=dep[fs]+1;
    fa[s][0]=fs;
    for(int i=1;(1<<i)<=dep[s];i++) //计算 
      fa[s][i]=fa[fa[s][i-1]][i-1];
    for(int i=head[s];i;i=q[i].f)
      if(q[i].v!=fs)
        dfs(q[i].v,s);
}

int lca(int x,int y)
{
    if(dep[x]<dep[y])
      swap(x,y);
    while(dep[x]>dep[y])
      x=fa[x][lg[dep[x]-dep[y]]]; //将st提到与e同层 
    if(x==y) return x;
    for(int i=lg[dep[x]];i>=0;i--)  //同时往上提找LCA 
      if(fa[x][i]!=fa[y][i])
        x=fa[x][i], y=fa[y][i];
    return fa[x][0];
}
int main()
{
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1;i<n;i++)
    {
        int x,y;
		scanf("%d%d",&x,&y);
        cun(x,y); cun(y,x);
    }
    dfs(s,0);
    lg[0]=-1;
    for(int i=1;i<=n;i++)
      lg[i]=lg[i/2]+1;
    for(int i=1;i<=m;i++)
    {
        int x,y;
		scanf("%d%d",&x,&y);
        printf("%d\n",lca(x,y));
    }
    return 0;
}
三、Trajan求法:

Trajan求法是一种离线的LCA求法,需要使用并查集记录某个结点的祖先结点,利用dfs就能实现所有LCA的查询,与前面的方法有些许不同。

对于每个点,我们都会记录下与它有关的询问,同时,我们还要记录一个v代表记录该点是否被访问,fa记录该点的父节点

对于整个trajan的求法,可以分成4步:

1、从根节点u开始,遍历每个节点的子节点v,并将其标记为已访问
2、若仍存在子节点,重复1的过程
3、并查集合并u、v
4、遍历与v有关的查询,若在一组查询中点x已经搜过,则v、x两点的公共祖先为v合并到的祖先节点a

具体做法流程参考(详细好懂):https://www.cnblogs.com/JVxie/p/4854719.html

放上代码:
#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
const int N=500005;
const int inf=0x3f3f3f3f;
int n,m,s;
int fa[N],ans[N];
struct qxx{
	int fr,y;
}q[2*N];
int zs,head[N];
vector<int> d[N],x[N];
bool v[N];

void cun(int x,int y)
{
	q[++zs].fr=head[x];
	q[zs].y=y;
	head[x]=zs;
}

void add(int a,int b,int xh)   //存每次的公共祖先询问 
{
	d[a].push_back(b); x[a].push_back(xh);
	d[b].push_back(a); x[b].push_back(xh);
}

int ff(int x)
{
	if(fa[x]==x) return x;
	else return fa[x]=ff(fa[x]);
}

void trajan(int u)
{
	v[u]=1;
	for(int i=head[u];i;i=q[i].fr)
	{
		int y=q[i].y;
		if(v[y]) continue;
		trajan(y);
		fa[y]=u;
	}
	for(int i=0;i<d[u].size();i++)
	{
		if(v[d[u][i]])  //如果询问的另一个点已经找过了 
		{
			int fx=ff(d[u][i]);  //找合并的父节点即为公共祖先 
			ans[x[u][i]]=fx;
		}
	}
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	cin>>n>>m>>s;
	for(int i=1;i<=n;i++)
	    fa[i]=i;
	for(int i=1;i<n;i++)
	{
		int a,b;
		cin>>a>>b;
		cun(a,b); cun(b,a);
	}
	for(int i=1;i<=m;i++)
	{
		int a,b;
		cin>>a>>b;
		if(a==b) ans[i]=0;
		else ans[i]=inf; //初始化答案数组 
		add(a,b,i); add(b,a,i); //存入每次询问 
	}
	trajan(s);
	for(int i=1;i<=m;i++) 
	    cout<<ans[i]<<endl;
	return 0;
}

LCA见的还是比较少,容易忘了,还是写个博客记一下~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值