从自编码器得到图像隐编码

import numpy as np
import torch
from trainVGGAE import AutoEncoderVGG
from genlabel import MyDataset
from torch.utils.data.dataloader import DataLoader


def autoencoder():
    model = AutoEncoderVGG().to('cuda')
    model.load_state_dict(torch.load('./VGGAE.pt'))
    my_dataset = MyDataset('./samples')
    data_loader = DataLoader(dataset=my_dataset, batch_size=1)
    trian_x = []
    label = []
    for x, y in data_loader:
        x = x.to(torch.float).to('cuda')
        trian_x.append(np.array(model.encoder(x)[0].flatten(1).detach().to('cpu')))
        label.append(y.numpy())
    trian_x = np.array(trian_x).squeeze(axis=1).astype(np.float32)
    # print(label)
    label = np.array(label)
    label = label.reshape(len(trian_x), 1).astype(np.float32)
    train = np.concatenate((trian_x, label), axis=1)
    return train


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值