- 博客(6)
- 收藏
- 关注
原创 大数据生态与Spark
一、大数据 大数据不仅仅是数据的大量化而是包含快速化多样化和价值化等多重属性。他的数据类型繁多,是由结构化和非结构化数据组成的,10%的结构化数据,存储在数据库中,90%的非结构化数据,它们与人类信息密切相关。 特点: 1.大量 大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时 间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。只有数据体量达到了PB级别以上,才能被称为大数据。1PB等于1024TB,1TB等于1024G,
2021-03-03 11:51:54 202
原创 生成器函数
生成器函数: 生成器函数使用yield返回返回值。函数并没有结束,还可以继续执行,生成器一次返回一个(组)数据。 gen = func1() 生成器对象 循环生成器对象时,一次获取一个值 for i in gen: print(i) 将生成器对象强制类型转换为列表 print(list(gen)) print(next(gen)) # “h” print(“123456”) print(next(gen)) # “e” print(“abcdef”) for i in gen: print(i,end="
2020-11-30 21:12:17 236
原创 随机数与时间模块
随机数 import random 1.随机一个整数randint() 包含开头结尾:print(random.randint(1,43) 2.随即一个小数random() 0~1:print(random.random() 3. 随机一个范围randrange(开始值,结束值,步长值) 含头不含尾0-9:print(random.randrange(0,10,2) 4. choice() 随机一个元素:print(random.choice(’“a1”,“b2”,“c3”,“d4”’) 时间模块impo
2020-11-25 22:23:01 146
原创 模块
模块: .py文件都是模块;模块中可以包含定义好的函数、变量、类、数据等内容。 使用模块:import m1(提前写好的脚本文件,m1.py) 被调用的模块执行后会自动被Python解释器编译成二进制文件,用于对模块加速执行 引用所有 as 起别名 name_变量: name是函数的变量,特殊变量,他有默认值,为 “main” 当模块被引用时_name_被自动改为模块名。 当某些代码不想被运行使用name变量 if__name_==‘main’: 包: 用于存放模块的文
2020-11-25 22:02:51 99
原创 匿名函数
匿名函数:定义时没有函数名的函数。 临时只使用一次的简单函数。一般用于给高阶函数传参。 定义匿名函数 print((lambda name: "hello "+name)(“小明”)) 使用变量赋值的方法给匿名函数->函数名。 add = lambda x,y : x+y add -> function 函数 type(add) print(type(add)) print(add(3,4)) 三目运算 x = 0 值1 if 条件 else 值2 # 当条件成立返回值1,条件
2020-11-11 20:40:18 212
原创 2020-11-04
Python特点 1、简单灵活2、 开源免费3、 跨平台4、 高级动态5、 支持命令式编程6、函数式编程7、 面向对象编程 基本数据类型标准数据类型: 数字(Number)、字符串(String)、列表(List)、元组(Tuple)、集合(Set)和字典(Dictionary);(1):不可变数据:Number(数字)、String(字符串)、Tuple(元组);(2):可变数据:List(列表)、Dictionary(字典)、Set(集合)。 算术运算符 1.比较运算符2.赋值运算符3.逻辑运算符4.位
2020-11-04 19:23:12 87
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人