最近发生一些事情,情绪有点不稳定,现在事情解决的差不多了。
今天是考研出分的日子,祝所有为之奋斗的学长学姐一研为定,定在研一
前几天的力扣练的基础题就不写啦,就写个洛谷上一个并查集加图论的题,这道题可烦死我啦。第一,并查集之前用的很少,不过现在差不多很熟了,感谢这道题,又悲又喜。第二,链式前向星用的不太熟练,找了很长时间才找出来在遍历的时候出错的。
很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系。
某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球。这些星球通过特殊的以太隧道互相直接或间接地连接。
但好景不长,很快帝国又重新造出了他的超级武器。凭借这超级武器的力量,帝国开始有计划地摧毁反抗军占领的星球。由于星球的不断被摧毁,两个星球之间的通讯通道也开始不可靠起来。
现在,反抗军首领交给你一个任务:给出原来两个星球之间的以太隧道连通情况以及帝国打击的星球顺序,以尽量快的速度求出每一次打击之后反抗军占据的星球的连通块的个数。(如果两个星球可以通过现存的以太通道直接或间接地连通,则这两个星球在同一个连通块中)。
输入格式
输入文件第一行包含两个整数,n,m,分别表示星球的数目和以太隧道的数目。星球用 0 ∼n−1 的整数编号。
接下来的 m 行,每行包括两个整数 x,y,表示星球 x 和星球 y 之间有 “以太” 隧道,可以直接通讯。接下来的一行为一个整数 k ,表示将遭受攻击的星球的数目。
接下来的 k 行,每行有一个整数,按照顺序列出了帝国军的攻击目标。这 k 个数互不相同,且都在 0 到 n-1 的范围内。
输出格式
第一行是开始时星球的连通块个数。接下来的 k 行,每行一个整数,表示经过该次打击后现存星球的连通块个数。
思路:如果我们正着推,每次我们都要计算连通块,这好像有点困难,所以我们逆着推,一开始就是摧毁后的,然后我们一个个重建,然后最后在正着输出。
在链式前向星的结构题中,我们多定义一个变量node,表示终点,方便我们判断连通块。
我认为最重要是如何判断连通块,首先,起点与终点不能被摧毁,然后,利用并查集查询这两个点是否是同一个祖先
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF=0x7fffffff;
const int N = 1e7+5;
const int mod=100003;
int s[N];
int head[N];
bool vis[N];
int b[N];
int res[N];
struct Node{
int from;
int next;
int node;
}edge[N];
int cnt;
void add(int from,int next){
edge[++cnt].from=from;
edge[cnt].next = head[from];
head[from]=cnt;
edge[cnt].node=next;
}
int find_set(int x)
{
if(s[x]==x)
return x;
return s[x]=find_set(s[x]);
}
void union_set(int x,int y)
{
int dx= find_set(x);
int dy=find_set(y);
if(dx!=dy)
s[dy]=dx;
}
int main()
{
ios::sync_with_stdio(false);
memset(head,-1,sizeof(head));
int n,m;
cin>>n>>m;
for(int i=0;i<n;i++){
s[i]=i;
}
for(int i=0;i<m;i++){
int x,y;
cin>>x>>y;
add(x,y);
add(y,x);
}
int k;
cin>>k;
for(int i=1;i<=k;i++){
cin>>b[i];
vis[b[i]]=1;
}
int sum=n-k;
for(int i=1;i<=2*m;i++){
if(!vis[edge[i].from]&&!vis[edge[i].node]&&find_set(edge[i].from)!=find_set(edge[i].node)){
sum--;
union_set(edge[i].from,edge[i].node);
}
}
res[k+1]=sum;
for(int i=k;i>=1;i--){
sum++;
vis[b[i]]=0;
for(int j=head[b[i]];j=-1;j=edge[j].next){
if(!vis[edge[j].node]&&find_set(b[i])!=find_set(edge[j].node)){
sum--;
union_set(b[i],edge[j].node);
}
}
res[i]=sum;
}
for(int i=1;i<=k+1;i++)
cout<<res[i]<<endl;
return 0;
}