搭建神经网络进行简单的回归预测

本文介绍了如何利用keras构建神经网络模型进行回归预测。首先对非数值特征进行独热编码处理,接着提取标签并转换格式,然后详细讨论了网络模型的构建,包括激活函数、权重初始化、正则化等关键参数的选择,最后配置优化器和损失函数。

先展示数据集如下

回归预测的目的是预测出Adj Close列的值,先附上所有代码

import numpy as np
import pandas as pd
import  matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
warnings.filterwarnings("ignore")

features = pd.read_csv(r"D:\python\apple.csv")
print(features.head())

features = pd.get_dummies(features)
print(features.head())

label = np.array(features['Adj Close'])
features = features.drop('Adj Close',axis=1)

features_list = list(features.columns)
features = np.array(features)

from sklearn import preprocessing

input_features = preprocessing.StandardScaler().fit_transform(features)

model = tf.keras.Sequential()
model.add(layers.Dense(16,kernel_initializer = 'random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.03)))
model.add(layers.Dense(32,kernel_initializer = 'random_
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值