先展示数据集如下

回归预测的目的是预测出Adj Close列的值,先附上所有代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
warnings.filterwarnings("ignore")
features = pd.read_csv(r"D:\python\apple.csv")
print(features.head())
features = pd.get_dummies(features)
print(features.head())
label = np.array(features['Adj Close'])
features = features.drop('Adj Close',axis=1)
features_list = list(features.columns)
features = np.array(features)
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
model = tf.keras.Sequential()
model.add(layers.Dense(16,kernel_initializer = 'random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.03)))
model.add(layers.Dense(32,kernel_initializer = 'random_

本文介绍了如何利用keras构建神经网络模型进行回归预测。首先对非数值特征进行独热编码处理,接着提取标签并转换格式,然后详细讨论了网络模型的构建,包括激活函数、权重初始化、正则化等关键参数的选择,最后配置优化器和损失函数。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



