难度中等276
在有向图中,以某个节点为起始节点,从该点出发,每一步沿着图中的一条有向边行走。如果到达的节点是终点(即它没有连出的有向边),则停止。
对于一个起始节点,如果从该节点出发,无论每一步选择沿哪条有向边行走,最后必然在有限步内到达终点,则将该起始节点称作是 安全 的。
返回一个由图中所有安全的起始节点组成的数组作为答案。答案数组中的元素应当按 升序 排列。
该有向图有 n
个节点,按 0
到 n - 1
编号,其中 n
是 graph
的节点数。图以下述形式给出:graph[i]
是编号 j
节点的一个列表,满足 (i, j)
是图的一条有向边。
示例 1:
输入:graph = [[1,2],[2,3],[5],[0],[5],[],[]] 输出:[2,4,5,6] 解释:示意图如上。
示例 2:
输入:graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]] 输出:[4]
提示:
n == graph.length
1 <= n <= 104
0 <= graph[i].length <= n
graph[i]
按严格递增顺序排列。- 图中可能包含自环。
- 图中边的数目在范围
[1, 4 * 104]
内。
通过次数31,337提交次数54,386
/*题目要求是查找安全结点 其实就是不能构成环 到最后的结点没有出度 因此我们其实可以反向拓扑排序 因为都是从入度为零的结点开始添加的 如果结点能够存在于拓扑序中 那么它在原题中的最终结点一定都是出度为零的点
反向建立图谱排序 */
class Solution {
public:
vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
int n = graph.size();
// 反图,邻接表存储
vector<vector<int>> new_graph(n);
// 节点入度
vector<int> Indeg(n, 0);
for(int i = 0; i < n; i++) {
for(int x : graph[i]) {
new_graph[x].push_back(i);
}
// 原数组记录的节点出度,在反图中就是入度
Indeg[i] = graph[i].size();
}
// 拓扑排序
queue<int> q;
// 首先将入度为 0 的点存入队列
for(int i = 0; i < n; i++) {
if(!Indeg[i]) {
q.push(i);
}
}
while(!q.empty()) {
// 每次弹出队头元素
int cur = q.front();
q.pop();
for(int x : new_graph[cur]) {
// 将以其为起点的有向边删除,更新终点入度
Indeg[x]--;
if(!Indeg[x]) q.push(x);
}
}
// 最终入度(原图中出度)为 0 的所有点均为安全点
vector<int> ret;
for(int i = 0; i < n; i++) {
if(!Indeg[i]) ret.push_back(i);
}
return ret;
}
};