将数组进行向左移动k位置
例如原数组为1,2,3,4,5,6,7,8,9 将数组中的元素都向左移动k = 3位置之后的数组:4,5,6,7,8,9,1,2,3
暴力做法
我们可以实现k次将数组向左移动一位 ,时间复杂度大约是n*k,因为每一次我们都要进行n次移动嘛
#include <stdio.h>
int a[] = {1,2,3,4,5,6,7,8,9,10,11,12};
int shift(int *A, int n, int s, int k)
{
int back = A[s]; //记录一下起始的位置
int i = s;
int j = (s + k) % n;
int mov = 0;
while ( s != j ) { //k是间隔
A[i] = A[j]; //向左移动k位置
i = j; //i挪到j,继续进行挪坑
j = (j + k) % n;
mov ++; //移动次数加一
}
A[i] = back; //将第一次存储的放到最终的位置
return mov + 1;
}
int shift0(int *A, int n, int k)
{
if (k < 1) return 0;
int mov = 0;
while (k -- ) { //进行k次移动一位的操作
mov += shift(A, n, 0, 1);
}
return mov;
}
int main()
{
int n = sizeof (a) / sizeof (int);
int k = 3;
printf("原数组:");
for (int i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n间隔k为:%d\n", k);
int times = shift0(a, n, k);
printf("一共执行了%d次移动操作\n执行后的数组:", times);
for (int i = 0; i < n; i++ ) {
printf("%d ", a[i]);
}
}
迭代做法
就如同上面的样例1,2,3,4,5,6,7,8,9 ->4,5,6,7,8,9,1,2,3 来说,我们第一步将1保存,cur = 1然后直接将4移动到cur = 1的位置,然后cur变成(1 + k)= 4,之后将cur + k = 7移动到4的位置上…我们每一次的移动都是有效的,移动的数就是最终的位置,因此我们这样的时间复杂度就是O(N)
#include <stdio.h>
int a[] = {1,2,3,4,5,6,7,8,9,10,11,12};
int shift(int *A, int n, int s, int k)
{
int back = A[s]; //记录一下起始的位置
int i = s;
int j = (s + k) % n;
int mov = 0;
while ( s != j ) { //k是间隔
A[i] = A[j]; //向左移动k位置
i = j; //i挪到j,继续进行挪坑
j = (j + k) % n;
mov ++; //移动次数加一
}
A[i] = back; //将第一次存储的放到最终的位置
return mov + 1;
}
int shift1 ( int* A, int n, int k ) { //通过GCD(n, k)轮迭代,将数组循环左移k位,O(n)
if ( k < 1 ) return 0;
int mov = 0, s = 0;
while ( mov < n ) {
mov += shift ( A, n, s++, k );
}
return mov;
}
int main()
{
int n = sizeof (a) / sizeof (int);
int k = 3;
printf("原数组:");
for (int i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n间隔k为:%d\n", k);
int times = shift1(a, n, k);
printf("一共执行了%d次移动操作\n执行后的数组:", times);
for (int i = 0; i < n; i++ ) {
printf("%d ", a[i]);
}
}
Reverse翻转
举一个栗子就明白了,n=9, k=4
1234 56789
4321 98765 1. 从1开始 到后面k个单元进行翻转 2.从A + k开始翻转的长度是n-k
1234 56789 从头到尾进行翻转
为什么这样比较快呢?因为我们这样访问数据是比较密集的,效率更高
#include <stdio.h>
#include <iostream>
using namespace std;
int a[] = {1,2,3,4,5,6,7,8,9,10,11,12};
void reverse(int *A, int low, int high)
{
if(low < high) {
swap(A[low], A[high]);
reverse(A, low + 1, high - 1);
}
}
void shift2(int *A, int n, int k)
{
k %= n;
reverse(A, 0, k - 1);
reverse(A, k, n - 1);
reverse(A, 0, n - 1);
}
int main()
{
int n = sizeof (a) / sizeof (int);
int k = 3;
printf("原数组:");
for (int i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n间隔k为:%d\n", k);
shift2(a, n, k);
for (int i = 0; i < n; i++ ) {
printf("%d ", a[i]);
}
}