证明:对每个整数n,存在一个数是n的倍数且在它的十进制表示中只出现0和1。
令n是正整数。考虑n+1个整数1,11,111,…,11 … 1(在这个表中,最后一个整数的十进制表示中具有n +1个1)。注意当一个整数被n整除时存在n个可能的余数。因为这个表中有n +1个整数,由鸽巢原理,必有两个整数在除以n时有相同的余数。这两个整数之差的十进制表示中只含有0和1,且它能被n整除。
假设计算机科学实验室有15台工作站和10台服务器。可以用一条电缆直接把工作站连接到服务器。同一时刻只有一条到服务器的直接连接是有效的。我们想保证在任何时刻任何一组不超过10台工作站可以通过直接连接同时访问不同的服务器。尽管我们可以通过将每 台工作站直接连接到每台服务器(使用150条连线)来做到这一点,但达到这个目标所需要的最少直接连线的数目是多少?
将工作站标记为W1 , W2 , …, W15 。服务器标记为S1 , S2 , …, S10 。假设对于k= 1,2,…,10,我们连接Wk 到Sk ,并且W11 , W12 , W13 , W15 和W15 中的每个工作站都连接到所有的10台服务器。总共60条直接连线。显然,在任何时刻任何一组不超过10台工作站可以通过直接连接同时访问不同的服务器。为看到这一点只要注意下述事实:如果这个组包含工作站Wj (1≤j≤10),那么Wj可以访问服务器Sj 。对于组里的每台工作站Wk (k ≥11),一定存在不在组里的工作站Wj(1≤j≤10)与之对应,因此Wk可以访问服务器Sj(这是由于存在多少台不在组里的工作站Wj,1≤j≤10,至少存在同样多台的服务器Sj可以被其他工作站访问)。
现在假设在工作站和服务器之间直接连线少于60条。那么某台服务器将至多连接, ⌊ 59 / 10 ⌋ =5台工作站。(如果所有的服务器连接到至少6台工作站,那么将存在至少6·10=60条直接连线。)这意味着剩下的9台服务器对于其他10台工作站同时访问不同的服务器就不够用了。因此,至少需要60条直接连线,从而得到答案是60。