Codeforces Round #771 (Div. 2)

这篇博客探讨了三个与序列操作和排序算法相关的问题。问题A涉及序列的翻转以达到字典序最小的序列,通过贪心思想解决。问题B讨论了如何通过交换相邻奇偶性不同的数来排序序列。问题C分析了序列中逆序对的组合,通过判断序列中元素位置与大小关系来确定组合数量。博客提供了AC代码示例,帮助理解解题思路。
摘要由CSDN通过智能技术生成

能力有限,只有A,B,C,大佬求带

A. Reverse

题意:给你一个序列,可以对其中一段区间[L,R]进行翻转,然后要求翻转一次找到字典序最小的序列

分析:其实题目也暗藏提示,就是解释字典序的那一段;想要字典序最小,利用贪心的思想把如果当前这个位置 L 后面有比他小的元素,把最小的元素位置 R 找到,然后对[L,R]区间翻转即可

AC代码

#include<iostream>
#include<algorithm>
#include<cmath>
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
int t,n;
int a[505];
void solve()
{
	int l,r;
	for(int i = 1 ; i <= n ; i++){
		int mx = a[i];
		l = i,r = i;
		for(int j = i + 1 ; j <= n ; j++){  //如果当前位置后面有更小的元素
			if(a[j] < mx){
				r = j;
				mx = a[j];
			}
		}
		if(mx == a[i]) continue;  // 说明后面没有比a[i]更小的
		else {
			for(int i = 1 ; i <= l - 1 ; i++) cout << a[i] << " ";
			for(int i = r ; i >= l ; i--) cout << a[i] << " ";
			for(int i = r + 1 ; i <= n ; i++) cout << a[i] << " ";
			cout << endl;
			return ;	
		}
	}
	for(int i = 1 ; i <= n ; i++) cout << a[i] << " "; //说明本身就是最小的字典序序列
	cout << endl;
}
int main(){
	IOS;
 	cin >> t;
 	while(t--){
 		cin >> n ;
 		for(int i = 1 ; i <= n ;  i++) cin >> a[i];
 		solve();
	 }
    return 0;
}

B. Odd Swap Sort

 题意:又给你一个序列,然后假如Ai + Ai+1 的和是奇数,就可以交换这个两个数,问是否可以这样交换使它变成从小到大的排序的序列

分析: 他能交换的只有相邻两个数的奇偶性不同的数,说明NO的情况出现在两个数奇偶性相同,假如前面的数比后面的数大,无论如何都无法使前面的数弄到后面去,所以如果我排除了所有的不可能情况,那么余下的岂不是都是YES

AC代码

#include<iostream>
#include<algorithm>
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
int t,n;
void solve()
{
	cin >> n;
	int l = 0,r = 0,x;
	bool flag = true;
	for(int i = 1 ; i <= n ; i++){
		cin >> x;
		if(x & 1){
			if(l > x) flag = false;   
//虽然这里已经知道答案了,但是还不能结束,要把这一组样例输完
			else l = x;
		}
		else{
			if(r > x) flag = false;
			else r = x;
		}
	}
	if(flag) cout << "YES" << endl;
	else cout << "NO" << endl; 
}
int main(){
	IOS;
	cin >> t;
	while(t--){
		solve();
	}
    return 0;
}

C. Inversion Graph

 

 题意:

又是给你一个序列,如果 i < j ,ai > aj,那么他们两个可以建立一条 无向边,之后他们两个就属于一个连通分量,简单的说,他们两个就是一组的数了,最终问这些数可以组成几组

分析:如果这个题不给这个条件,难度上升一大截,这个关键的信息就是

是不是这个序列有哪些数了我都知道了,难度是不是就下降了

先看第一个样例,是不是本来就是有序序列,而且从小到大,显然就是N组

如果最后一个样例分析明白了,这个题就做出来了

假如我们对x这个数想进行连边,是不是后面比他小的都可以,由于这些数字范围在1 ~ n之间,如果从小到大排序,那么每个数就是有一个确定的位置,

情况一:如果x这个数到他应该放的位置都是最大,那么从原本x的位置开始到应该放置的位置这个区间都可以和x连边

情况二:如果x这个数到他应该放的位置不是最大,说明这中间有更大的数,那么这之间比x小的数就在中间这个更大的数后面,但是x也可以和他连边,更大的数也可以和他连边,那么这个岂不是一组的数,

综合一二:最终答案就变成了,如果[L,R]这个区间的最大值到该放的位置时都是最大值,就会产生一组新的数

AC代码

#include<iostream>
#include<algorithm>
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define inf 0x3f3f3f3f
typedef long long ll;
using namespace std;
int t,n;
void solve()
{
	int ans = 0;
	int MAX = 0; //区间最大值
	int x;
	cin >> n; 
	for(int i = 1 ; i <= n ; i++){
		cin >> x;
		MAX = max(MAX,x);
		if(MAX == i) ans++;
	}
	cout << ans << endl;
}
int main(){
	IOS;
	cin >> t;
	while(t--){
		solve();
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值