自己的笔记
用题目了解
已知有两个字串 A, B 及一组字串变换的规则(至多 6 个规则):
A1→B1
A2→B2
…
规则的含义为:在 A 中的子串 A1 可以变换为 B1、A2 可以变换为 B2…。
例如:A=abcd B=xyz
变换规则为:
abc → xu ud → y y → yz
则此时,A 可以经过一系列的变换变为 B,其变换的过程为:
abcd → xud → xy → xyz
共进行了三次变换,使得 A 变换为 B。
输入格式
输入格式如下:
A B
A1 B1
A2 B2
… …
第一行是两个给定的字符串 A 和 B。
接下来若干行,每行描述一组字串变换的规则。
所有字符串长度的上限为 20。
输出格式
若在 10 步(包含 10 步)以内能将 A 变换为 B ,则输出最少的变换步数;否则输出 NO ANSWER!。
思路就是双端队列,直接看代码
#include<bits/stdc++.h>
using namespace std;
const int N = 6;
int n;
string a[N],b[N];
// 扩展函数
// 参数:扩展的队列,到起点的距离,到终点的距离,规则,规则
//返回值:满足条件的最小步数
int extend(queue<string>& q, unordered_map<string,int>& da, unordered_map<string, int>& db,
string a[], string b[]){
// 取出队头元素
string t = q.front();
q.pop();
for(int i = 0; i < t.size(); i ++) // t从哪里开始扩展
for(int j = 0; j < n; j ++) // 枚举规则
//如果t这个字符串的一段= 规则,比如= xyz,才可以替换
if(t.substr(i, a[j].size()) == a[j]){
// 变换之后的结果state:前面不变的部分+ 变化的部分 + 后面不变的部分
// 比如abcd ,根据规则abc--> xu,变成 xud,这里的state就是xud
string state = t.substr(0,i) +b[j] + t.substr(i + a[j].size());
// state状态是否落到b里面去,两个方向会师,返回最小步数
if(db.count(state)) return da[t] + 1 + db[state];
// 如果该状态之前已扩展过,
if(da.count(state)) continue;
da[state] = da[t] + 1;
q.push(state);
}
return 11;
}
// 从起点和终点来做bfs
int bfs(string A, string B){
queue<string> qa, qb; // 两个方向的队列
//每个状态到起点的距离da(哈希表),每个状态到终点的距离db哈希表
unordered_map<string, int> da, db;
// qa从起点开始搜,qb从终点开始搜
qa.push(A), da[A] = 0; // 起点A到起点的距离为0
qb.push(B), db[B] = 0; // 终点B到终点B的距离为0
// qa和qb都有值,说明可以扩展过来,否则说明是不相交的
while(qa.size() && qb.size()){
int t; // 记录最小步数
// 哪个方向的队列的长度更小一些,空间更小一些,从该方向开始扩展,
// 时间复杂度比较平滑,否则有1个点会超时
if(qa.size() <= qb.size())
t = extend(qa, da, db, a, b);
else t = extend(qb, db, da, b, a);
// 如果最小步数在10步以内
if( t <= 10) return t;
}
return 11; // 如果不连通或者最小步数>10,则返回大于10的数
}
int main(){
string A, B;
cin >> A >> B;
// 读入扩展规则,分别存在a数组和b数组
while( cin >> a[n] >> b[n]) n ++;
int step = bfs(A,B);
if(step > 10) puts("NO ANSWER!");
else cout << step << endl;
}