数学建模学习记录帖

本文记录了数学建模中的数据标准化处理过程,包括极差标准化法、Z-score标准化法和线性比例标准化法,旨在统一不同指标的比较标准,确保分析的可靠性。详细介绍了各种方法的适用情况及注意事项。
摘要由CSDN通过智能技术生成

暑假留校培训,准备今年的数模国赛,故开个贴将自己的学习路线与感悟记录下来,供自己学习使用,侵删。

1.数据的标准化处理

针对涉及多个不同指标综合起来的评价模型,由于各个指标的属性不同,无法直接在不同指标之间进行比较和综合。为了统一比较的标准,保证结果的可靠性,我们在分析数据之前,需要对原始变量进行一定的处理。

数据的标准化,是通过一定的数学变换方式,将原始数据按照一定的比例进行转换,使之落入到一个小的特定区间内,例如0~1或-1~1的区间内,消除不同变量之间性质、量纲、数量级等特征属性的差异,将其转化为一个无量纲的相对数值,也就是标准化数值,使各指标的数值都处于同一个数量级别上,从而便于不同单位或数量级的指标能够进行综合分析和比较。

(1)、极差标准化法

极差标准化法,是消除变量量纲和变异范围影响最简单的方法。

具体的操作方法为:首先需要找出该指标的最大值(Xmax)和最小值(Xmin),并计算极差(R = Xmax - Xmin),然后用该变量的每一个观察值(X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值